|   | 
Details
   web
Records
Author Wang, L.; Li, Y.; Yang, X.-Y.; Zhang, B.-B.; Ninane, N.; Busscher, H.J.; Hu, Z.-Y.; Delneuville, C.; Jiang, N.; Xie, H.; Van Tendeloo, G.; Hasan, T.; Su, B.-L.
Title Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition Type A1 Journal article
Year (down) 2021 Publication National Science Review Abbreviated Journal Natl Sci Rev
Volume 8 Issue 4 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Like nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors. Though cellular encapsulation addresses these limitations, cell survival is usually compromised due to shell-to-cell contacts and low permeability. Here, we report ordered packing of silica nanocolloids with organized, uniform and tunable nanoporosities for single cyanobacterium nanoencapsulation using protamine as an electrostatic template. A space between the capsule shell and the cell is created by controlled internalization of protamine, resulting in a highly ordered porous shell-void-cell structure formation. These unique yolk-shell nano structures provide long-term cell viability with superior photosynthetic activities and resistance in harsh environments. In addition, engineering the colloidal packing allows tunable shell-pore diameter for size-dependent permeability and introduction of new functionalities for specific molecular recognition. Our strategy could significantly enhance the activity and stability of cyanobacteria for various nanobiotechnological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000651827200002 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.843 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.843
Call Number UA @ admin @ c:irua:179085 Serial 6885
Permanent link to this record
 

 
Author Wang, L.; Hu, Z.-Y.; Yang, X.-Y.; Zhang, B.-B.; Geng, W.; Van Tendeloo, G.; Su, B.-L.
Title Polydopamine nanocoated whole-cell asymmetric biocatalysts Type A1 Journal article
Year (down) 2017 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 53 Issue 49 Pages 6617-6620
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Our whole-cell biocatalyst with a polydopamine nanocoating shows high catalytic activity (5 times better productivity than the native cell) and reusability (84% of the initial yield after 5 batches, 8 times higher than the native cell) in asymmetric reduction. It also integrates with titania, silica, and magnetic nanoparticles for multi-functionalization.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000403572100018 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 15 Open Access OpenAccess
Notes ; This work was supported by PCSIRT (IRT_15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033), CNPC (PPC2016007) and the China Scholarship Council (CSC). We thank Prof. Damien Hermand (URPhyM in UNamur) for help with cell culture, Ms Noelle Ninane (Narilis in UNamur) for help with CLSM characterization and Ms Siming Wu (WHUT) for help with magnetic property characterization. ; Approved Most recent IF: 6.319
Call Number UA @ lucian @ c:irua:144185 Serial 4681
Permanent link to this record