|   | 
Details
   web
Records
Author Wu, M.F.; Zhou, S.; Yao, S.; Zhao, Q.; Vantomme, A.; van Daele, B.; Piscopiello, E.; Van Tendeloo, G.; Tong, Y.Z.; Yang, Z.J.; Yu, T.J.; Zhang, G.Y.
Title High precision determination of the elastic strain of InGaN/GaN multiple quantum wells Type A1 Journal article
Year (down) 2004 Publication Journal of vacuum science and technology: B: microelectronics and nanometer structures Abbreviated Journal
Volume 22 Issue 3 Pages 920-924
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000222481400010 Publication Date 2004-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 15 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54863 Serial 1437
Permanent link to this record
 

 
Author Nistor, L.; Bender, H.; Vantomme, A.; Wu, M.F.; van Landuyt, J.; O'Donnell, K.P.; Martin, R.; Jacobs, K.; Moerman, I.
Title Direct evidence of spontaneous quantum dot formation in a thick InGaN epilayer Type A1 Journal article
Year (down) 2000 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 77 Issue 4 Pages 507-509
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report a direct observation of quantum dots formed spontaneously in a thick InGaN epilayer by high resolution transmission electron microscopy. Investigation of a (280 nm thick) In0.22Ga0.78N single layer, emitting in the blue/green spectral region, reveals quantum dots with estimated sizes in the range of 1.5-3 nm. Such sizes are in very good agreement with calculations based on the luminescence spectra of this specimen. (C) 2000 American Institute of Physics. [S0003-6951(00)00930-X].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000088225400016 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 44 Open Access
Notes Approved Most recent IF: 3.411; 2000 IF: 3.906
Call Number UA @ lucian @ c:irua:103448 Serial 712
Permanent link to this record
 

 
Author Vantomme, A.; Wu, M.F.; Hogg, S.; van Landuyt, J.; et al.
Title Comparative study of structural properties and photoluminescence in InGaN layers with a high In content Type A1 Journal article
Year (down) 2000 Publication Internet journal of nitride semiconductor research T2 – Symposium on GaN and Related Alloys Held at the MRS Fall Meeting, NOV 29-DEC 03, 1999, BOSTON, MASSACHUSETTS Abbreviated Journal Mrs Internet J N S R
Volume 5 Issue s:[1] Pages art. no.-W11.38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Rutherford backscattering and channeling spectrometry (RBS), photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM) have been used to investigate macroscopic and microscopic segregation in MOCVD grown InGaN layers. The PL peak energy and In content (measured by RES) were mapped at a large number of distinct points on the samples. An indium concentration of 40%, the highest measured in this work, corresponds to a PL peak of 710 nn strongly suggesting that the light-emitting regions of the sample me very indium-rich compared to the average measured by RES. Cross-sectional TEM observations show distinctive layering of the InGaN films. The TEM study further reveals that these layers consist of amorphous pyramidal contrast features with sizes of order 10 nm The composition of these specific contrast features is shown to be In-rich compared to the nitride matrix.
Address
Corporate Author Thesis
Publisher Materials research society Place of Publication Warrendale Editor
Language Wos 000090103600097 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1092-5783 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103471 Serial 423
Permanent link to this record