|   | 
Details
   web
Records
Author Huang, S.-Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.-Y.; Wang, H.-E.; Van Tendeloo, G.; Su, B.-L.
Title Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries Type A1 Journal article
Year (down) 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 12 Pages 6819-6827
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Well shaped single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets at different particle sizes have been synthesized and used as anode materials for lithium ion batteries. The electrochemical results show that the smallest sized Mn3O4 nano-octahedra show the best cycling performance with a high initial charge capacity of 907 mA h g−1 and a 50th charge capacity of 500 mA h g−1 at a current density of 50 mA g−1 and the best rate capability with a charge capacity of 350 mA h g−1 when cycled at 500 mA g−1. In particular, the nano-octahedra samples demonstrate a much better electrochemical performance in comparison with irregular shaped Mn3O4 nanoparticles. The best electrochemical properties of the smallest Mn3O4 nano-octahedra are ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron reaction. On the other hand, the best electrochemical properties of the smallest Mn3O4 nano-octahedra can also be attributed to the smallest size resulting in the highest specific surface area, which provides maximum contact with the electrolyte and facilitates the rapid Li-ion diffusion at the electrode/electrolyte interface and fast lithium-ion transportation within the particles. The synergy of the exposed {011} facets and the smallest size (and/or the highest surface area) led to the best performance for the Mn3O4 nano-octahedra. Furthermore, HRTEM observations verify the oxidation of MnO to Mn3O4 during the charging process and confirm that the Mn3O4 octahedral structure can still be partly maintained after 50 dischargecharge cycles. The high Li-ion storage capacity and excellent cycling performance suggest that Mn3O4 nano-octahedra with exposed highly active {011} facets could be excellent anode materials for high-performance lithium-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000337143900072 Publication Date 2014-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 80 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:117076 Serial 1047
Permanent link to this record
 

 
Author Chen, L.-H.; Li, X.-Y.; Tian, G.; Li, Y.; Tan, H.-Y.; Van Tendeloo, G.; Zhu, G.-S.; Qiu, S.-L.; Yang, X.-Y.; Su, B.-L.
Title Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure Type A1 Journal article
Year (down) 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 10 Pages 1452-1456
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hole diggers: The hierarchically structured porous solid-acid catalyst described in this report possess a remarkable pore system, encompassing well-defined macrochannels, interconnected mesopores, intracrystalline mesopores, and tunable zeolite micropores. Importantly, the catalyst exhibits very strong acidity and superior catalytic activity for esterification reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000296497400009 Publication Date 2011-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 33 Open Access
Notes Iap Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:93675 Serial 2223
Permanent link to this record