|   | 
Details
   web
Records
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L.
Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
Year (down) 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume 15 Issue 7 Pages 10775-10981
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000679406500006 Publication Date 2021-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 538 Open Access OpenAccess
Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:180553 Serial 6846
Permanent link to this record
 

 
Author Geldof, M.; Monico, L.; Johnson, D.H.; Miliani, C.; Romani, A.; Grazia, C.; Buti, D.; Brunetti, B.G.; Janssens, K.; Van der Snickt, G.; Vanmeert, F.
Title Methods and materials of the Amsterdam sunflowers Type H1 Book chapter
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 85-123 T2 - Van Gogh’s Sunflowers illuminated – ar
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This chapter explains the materials and techniques employed in the Amsterdam Sunflowers, enabling a comparison with the London version described in chapter 3. Building upon the 2016 article published in the National Gallery Technical Bulletin, it incorporates the latest findings gained by computer-assisted methods used to characterize the canvas support, as well as in-situ campaigns of non-invasive investigation together with further analysis of microscopic paint samples. The chapter sequence follows the steps in Van Gogh's working practice. Starting with the canvas, automated analysis of the weave enables the provenance of the canvas to be traced back to a particular roll of linen ordered by Van Gogh. Combining technical evidence with knowledge of historical manufacturing techniques further allows us to reconstruct the way in which Van Gogh divided his canvas roll into pieces used for Sunflowers and other paintings. We go on to consider how, with the original painting at hand, he used charcoal to transfer the motif of the London Sunflowers onto his blank canvas. Despite careful planning of the composition, an adjustment was required late in the working process, when Van Gogh added a painted wooden strip to extend the background above the flower at the top edge of the canvas. The artist's process of working up the composition in paint is described, paying special attention to his use of colour. The pigments and pigment mixtures used in the Amsterdam Sunflowers have been comprehensively mapped and are compared with the London picture, with discussion of some similarities and differences that account for the distinctive colour scheme of each painting. This understanding of colour application in the Amsterdam Sunflowers lays the foundation for subsequent chapters that will go on to consider the impact of light-induced colour changes that have taken place over time, and the related need to define appropriate lighting guidelines for the future safe preservation of this painting and others made with similar materials (chapters 5 and 7).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190781 Serial 8223
Permanent link to this record