|   | 
Details
   web
Records
Author Tian, H.; Schryvers, D.; Shabalovskaya, S.; van Humbeeck, J.
Title TEM study of the mechanism of Ni ion release from Nitinol wires with original oxides Type P1 Proceeding
Year (down) 2009 Publication Abbreviated Journal
Volume Issue Pages 05027,1-05027,6
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract The surface of commercial Nitinol wires with original oxides and a thickness in the 30-190 nm range was investigated by different state of art TEM techniques. The oxide surface layer was identified as a combination of TiO and TiO2 depending on the processing of the wire. Between the core of the wires and the oxidized surface, an interfacial Ni3Ti nanolayer was observed while Ni nanoparticles are found inside the original oxide. The particle sizes, their distribution in the surface and the Ti-O stoichiometry were deduced from the analysis of the obtained data. Molecular dynamics calculations performed for evaluation of the stability of Ni particles relative to the atomic state revealed that a pure Ni particle has a lower energy than free Ni atoms inside the TiO2 lattice. The obtained results are discussed with respect to surface stability and Ni release in the human body.
Address
Corporate Author Thesis
Publisher Edp Place of Publication Coutaboeuf Editor
Language Wos 000274582300092 Publication Date 2009-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:81954 Serial 3493
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Shabalovskaya, S.; van Humbeeck, J.
Title Microstructure of surface and subsurface layers of a Ni-Ti shape memory microwire Type A1 Journal article
Year (down) 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue Pages 62-70
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructure of a 55 Êm diameter, cold-worked Ni-Ti microwire is investigated by different transmission electron microscopy techniques. The surface consists of a few hundred nanometer thick oxide layer composed of TiO and TiO2 with a small fraction of inhomogeneously distributed Ni. The interior of the wire has a core-shell structure with primarily B2 grains in the 1 Êm thick shell, and heavily twinned B19 martensite in the core. This core-shell structure can be explained by a concentration gradient of the alloying elements resulting in a structure separation due to the strong temperature dependence of the martensitic start temperature. Moreover, in between the B2 part of the metallic core-shell and the oxide layer, a Ni3Ti interfacial layer is detected.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000262912700009 Publication Date 2009-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes FWO G.0465.05; Multimat Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:72319 Serial 2074
Permanent link to this record
 

 
Author Shabalovskaya, S.A.; Tian, H.; Anderegg, J.W.; Schryvers, D.U.; Carroll, W.U.; van Humbeeck, J.
Title The influence of surface oxides on the distribution and release of nickel from Nitinol wires Type A1 Journal article
Year (down) 2009 Publication Biomaterials Abbreviated Journal Biomaterials
Volume 30 Issue 4 Pages 468-477
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The patterns of Ni release from Nitinol vary depending on the type of material (NiTi alloys with low or no processing versus commercial wires or sheets). A thick TiO2 layer generated on the wire surface during processing is often considered as a reliable barrier against Ni release. The present study of Nitinol wires with surface oxides resulting from production was conducted to identify the sources of Ni release and its distribution in the surface sublayers. The chemistry and topography of the surfaces of Nitinol wires drawn using different techniques were studied with XPS and SEM. The distribution of Ni into surface depth and the surface oxide thickness were evaluated using Auger spectroscopy, TEM with FIB and ELNES. Ni release was estimated using either ICPA or AAS. Potentiodynamic potential polarization of selected wires was performed in as-received state with no strain and in treated strained samples. Wire samples in the as-received state showed low breakdown potentials (200 mV); the improved corrosion resistance of these wires after treatment was not affected by strain. It is shown how processing techniques affect surface topography, chemistry and also Ni release. Nitinol wires with the thickest surface oxide TiO2 (up to 720 nm) showed the highest Ni release, attributed to the presence of particles of essentially pure Ni whose number and size increased while approaching the interface between the surface and the bulk. The biological implications of high and lasting Ni release are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Guildford Editor
Language Wos 000262065500006 Publication Date 2008-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-9612; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.402 Times cited 102 Open Access
Notes Fwo; G.0465.05 Approved Most recent IF: 8.402; 2009 IF: 7.365
Call Number UA @ lucian @ c:irua:72320 Serial 1641
Permanent link to this record