|   | 
Details
   web
Records
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C.
Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type A1 Journal article
Year (down) 2023 Publication Journal of applied physics Abbreviated Journal
Volume 133 Issue 15 Pages 150902-150937
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079329000001 Publication Date 2023-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:200351 Serial 9105
Permanent link to this record
 

 
Author Akgenc, B.; Sarikurt, S.; Yagmurcukardes, M.; Ersan, F.
Title Aluminum and lithium sulfur batteries : a review of recent progress and future directions Type A1 Journal article
Year (down) 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 25 Pages 253002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Advanced materials with various micro-/nanostructures have attracted plenty of attention for decades in energy storage devices such as rechargeable batteries (ion- or sulfur based batteries) and supercapacitors. To improve the electrochemical performance of batteries, it is uttermost important to develop advanced electrode materials. Moreover, the cathode material is also important that it restricts the efficiency and practical application of aluminum-ion batteries. Among the potential cathode materials, sulfur has become an important candidate material for aluminum-ion batteries cause of its considerable specific capacity. Two-dimensional materials are currently potential candidates as electrodes from lab-scale experiments to possible pragmatic theoretical studies. In this review, the fundamental principles, historical progress, latest developments, and major problems in Li-S and Al-S batteries are reviewed. Finally, future directions in terms of the experimental and theoretical applications have prospected.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655281200001 Publication Date 2021-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:179034 Serial 6971
Permanent link to this record
 

 
Author Sarikurt, S.; Kocabas, T.; Sevik, C.
Title High-throughput computational screening of 2D materials for thermoelectrics Type A1 Journal article
Year (down) 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 8 Issue 37 Pages 19674-19683
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract High-performance thermoelectric materials are critical in recuperating the thermal losses in various machinery and promising in renewable energy applications. In this respect, the search for novel thermoelectric materials has attracted considerable attention. In particular, low dimensional materials have been proposed as potential candidates due to their unique and controllable thermal and electronic transport properties. The considerable potential of several two-dimensional materials as thermoelectric devices has already been uncovered and many new candidates that merit further research have been suggested. In this regard, we comprehensively investigate the thermoelectric coefficients and electronic fitness function (EFF) of a large family of structurally isotropic and anisotropic two-dimensional layered materials using density functional theory combined with semi-classical Boltzmann transport theory. With this high-throughput screening, we bring to light additional 2D crystals that haven't been previously classified as favorable TE materials. We predict that Pb2Se2, GeS2, As-2, NiS2, Hf2O6, Zr2O6, AsBrS, ISbTe, ISbSe, AsISe, and AsITe are promising isotropic thermoelectric materials due to their considerably high EFF values. In addition to these materials, Hf2Br4, Zr2Br4, Hf2Cl4, Zr2Cl4, Hf2O6, Zr(2)O(6)and Os(2)O(4)exhibit strong anisotropy and possess prominently high EFF values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000573889000046 Publication Date 2020-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited Open Access
Notes Approved Most recent IF: 11.9; 2020 IF: 8.867
Call Number UA @ admin @ c:irua:193778 Serial 8039
Permanent link to this record
 

 
Author Sarikurt, S.; Çakir, D.; Keceli, M.; Sevik, C.
Title The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers Type A1 Journal article
Year (down) 2018 Publication Nanoscale Abbreviated Journal
Volume 10 Issue 18 Pages 8859-8868
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The newest members of a two-dimensional material family, involving transition metal carbides and nitrides (called MXenes), have garnered increasing attention due to their tunable electronic and thermal properties depending on the chemical composition and functionalization. This flexibility can be exploited to fabricate efficient electrochemical energy storage (batteries) and energy conversion (thermoelectric) devices. In this study, we calculated the Seebeck coefficients and lattice thermal conductivity values of oxygen terminated M2CO2 (where M = Ti, Zr, Hf, Sc) monolayer MXene crystals in two different functionalization configurations (model-II (MD-II) and model-III (MD-III)), using density functional theory and Boltzmann transport theory. We estimated the thermoelectric figure-of-merit, zT, of these materials by two different approaches, as well. First of all, we found that the structural model (i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials. The lattice thermal conductivity kappa(l), Seebeck coefficient and zT values may vary by 40% depending on the structural model. The MD-III configuration always has the larger band gap, Seebeck coefficient and zT, and smaller kappa(l) as compared to the MD-II structure due to a larger band gap, highly flat valence band and reduced crystal symmetry in the former. The MD-III configuration of Ti2CO2 and Zr2CO2 has the lowest kappa(l) as compared to the same configuration of Hf2CO2 and Sc2CO2. Among all the considered structures, the MD-II configuration of Hf2CO2 has the highest kappa(l), and Ti2CO2 and Zr2CO2 in the MD-III configuration have the lowest kappa(l). For instance, while the band gap of the MD-II configuration of Ti2CO2 is 0.26 eV, it becomes 0.69 eV in MD-III. The zT(max) value may reach up to 1.1 depending on the structural model of MXene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432096400055 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193788 Serial 8654
Permanent link to this record