|   | 
Details
   web
Records
Author Zhang, G.; Zhou, Y.; Korneychuk, S.; Samuely, T.; Liu, L.; May, P.W.; Xu, Z.; Onufriienko, O.; Zhang, X.; Verbeeck, J.; Samuely, P.; Moshchalkov, V.V.; Yang, Z.; Rubahn, H.-G.
Title Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films Type A1 Journal article
Year (down) 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the pressure-driven superconductor-insulator transition in heavily boron-doped nanodiamond films. By systematically increasing the pressure, we suppress the Josephson coupling between the superconducting nanodiamond grains. The diminished intergrain coupling gives rise to an overall insulating state in the films, which is interpreted in the framework of a parallel-series circuit model to be the result of bosonic insulators with preserved localized intragrain superconducting order parameters. Our investigation opens up perspectives for the application of high pressure in research on quantum confinement and coherence. Our data unveil the percolative nature of the electrical transport in nanodiamond films, and highlight the essential role of grain boundaries in determining the electronic properties of this material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460684600002 Publication Date 2019-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.926 Times cited 5 Open Access Not_Open_Access
Notes ; Y.Z. and Z.Y. acknowledge support from the National Key Research and Development Program of China (Grants No. 2018YFA0305700 and No. 2016YFA0401804), the National Natural Science Foundation of China (Grants No. 11574323, No. 11704387, and No. U1632275), the Natural Science Foundation of Anhui Province (Grants No. 1708085QA19 and No. 1808085MA06), and the Director's Fund of Hefei Institutes of Physical Science, Chinese Academy of Sciences (YZJJ201621). J.V. and S.K. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp, and thank the FWO (Research Foundation-Flanders) for financial support under Contract No. G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. T.S., O.O., and P.S. are supported by APVV-0036-11, APVV-0605-14, VEGA 1/0409/15, VEGA 2/0149/16, and EU ERDF-ITMS 26220120005. L.L. acknowledges the financial support of a FWO postdoctoral research fellowship (12V4419N) and the KU Leuven C1 project OPTIPROBE (C14/16/ 063). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158561 Serial 5260
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.;
Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
Year (down) 2014 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 26 Issue 13 Pages 2034-2040
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333616700008 Publication Date 2013-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 34 Open Access
Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved Most recent IF: 19.791; 2014 IF: 17.493
Call Number UA @ lucian @ c:irua:116150 Serial 1346
Permanent link to this record