|   | 
Details
   web
Records
Author Idrissi, H.; Renard, K.; Ryelandt, L.; Schryvers, D.; Jacques, P.J.
Title On the mechanism of twin formation in FeMnC TWIP steels Type A1 Journal article
Year (down) 2010 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 58 Issue 7 Pages 2464-2476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although it is well known that FeMnC TWIP steels exhibit high work-hardening rates, the elementary twinning mechanisms controlling the plastic deformation of these steels have still not been characterized. The aim of the present study is to analyse the extended defects related to the twinning occurrence using transmission electron microscopy. Based on these observations, the very early stage of twin nucleation can be attributed to the pole mechanism with deviation proposed by Cohen and Weertman or to the model of Miura, Takamura and Narita, while the twin growth is controlled by the pole mechanism proposed by Venables. High densities of sessile Frank dislocations are observed within the twins at the early stage of deformation, which can affect the growth and the stability of the twins, but also the strength of these twins and their interactions with the gliding dislocations present in the matrix. This experimental evidence is discussed and compared to recent results in order to relate the defects analysis to the macroscopic behaviour of this category of material.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000276523200018 Publication Date 2010-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 244 Open Access
Notes Iap Approved Most recent IF: 5.301; 2010 IF: 3.791
Call Number UA @ lucian @ c:irua:82270 Serial 2441
Permanent link to this record
 

 
Author Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J.
Title Is there a relationship between the stacking fault character and the activated mode of plasticity of FeMn-based austenitic steels? Type A1 Journal article
Year (down) 2009 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 60 Issue 11 Pages 941-944
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By changing the testing temperature, an austenitic FeMnAlSi alloy presents either å-martensite transformation or mechanical twinning during straining. In order to understand the nucleation and growth mechanisms involved in both phenomena, defects and particularly stacking faults, were characterized by transmission electron microscopy. It is observed that the character of the stacking faults also changes (from extrinsic to intrinsic) together with the temperature and the activated mode of plasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000265359900005 Publication Date 2009-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 84 Open Access
Notes Iap Approved Most recent IF: 3.747; 2009 IF: 2.949
Call Number UA @ lucian @ c:irua:77276 Serial 1751
Permanent link to this record
 

 
Author Jacques, P.; Verbist, K.; Lapin, J.; Ryelandt, L.; Van Tendeloo, G.; Delannay, F.
Title Critical assessment of the process of growth of a YBa2Cu3O7-\delta layer on Y2BaCuO5 Type A1 Journal article
Year (down) 1996 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 9 Issue Pages 176-183
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos A1996TZ48100008 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.325 Times cited 1 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15462 Serial 539
Permanent link to this record