|   | 
Details
   web
Records
Author Goris, B.; Roelandts, T.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S.
Title Advanced reconstruction algorithms for electron tomography : from comparison to combination Type A1 Journal article
Year (down) 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 127 Issue Pages 40-47
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this work, the simultaneous iterative reconstruction technique (SIRT), the total variation minimization (TVM) reconstruction technique and the discrete algebraic reconstruction technique (DART) for electron tomography are compared and the advantages and disadvantages are discussed. Furthermore, we describe how the result of a three dimensional (3D) reconstruction based on TVM can provide objective information that is needed as the input for a DART reconstruction. This approach results in a tomographic reconstruction of which the segmentation is carried out in an objective manner.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000316659100007 Publication Date 2012-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 63 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:101217 Serial 72
Permanent link to this record
 

 
Author Roelandts, T.; Batenburg, K.J.; Biermans, E.; Kübel, C.; Bals, S.; Sijbers, J.
Title Accurate segmentation of dense nanoparticles by partially discrete electron tomography Type A1 Journal article
Year (down) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 114 Issue Pages 96-105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000301954300011 Publication Date 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:97710 Serial 52
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J.
Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
Year (down) 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue S:2 Pages 934-935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ lucian @ c:irua:96554 Serial 3792
Permanent link to this record