|   | 
Details
   web
Records
Author Ouwehand, J.; Van Eynde, E.; De Canck, E.; Lenaerts, S.; Verberckmoes, A.; Van der Voort, P.
Title Titania-functionalized diatom frustules as photocatalyst for indoor air purification Type A1 Journal article
Year (down) 2018 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 226 Issue 226 Pages 303-310
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Diatom frustules were extracted from the species Thalassiosira pseudonana and functionalized with titania to be used as photocatalysts in the abatement of acetaldehyde. The synthetic procedure is water-based and environmentally friendly. The synthesis parameters were optimized to give the highest possible photocatalytic activity. The optimized material, visualized with TEM and STEM-EDX, shows the TiO2 nanoparticles grafted inside the frustule pores, as well as on the silica surface. The titania particles, stabilized by the frustules, are 2.5 times more active than the P25 benchmark material. The photocatalyst is then tested in conditions of elevated relative humidity, to simulate indoor air. The catalytic activity only shows a minor decrease at 50% relative humidity, which is a better result than for the P25 benchmark. When tested over an extended period of time, the photocatalyst only shows a minor decrease in activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425476800033 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 4 Open Access
Notes ; The authors are grateful to the Flemish government (VLAIO) for providing funding through grant number 150663. The Thalassiosira Pseudonana algae were kindly provided by TomAlgae. The authors thank Katrien Haustraete, Sander Clerick and Funda Alic for performing TEM and STEM-EDX, SEM and CHN analyses, respectively, and Isabelle Ascoop for fruitful discussions. ; Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:149836 Serial 5999
Permanent link to this record
 

 
Author Esquivel, D.; Ouwehand, J.; Meledina, M.; Turner, S.; Tendeloo, G.V.; Romero-Salguero, F.J.; Clercq, J.D.; Voort, P.V.D.
Title Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation Type A1 Journal article
Year (down) 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 339 Issue 339 Pages 368-377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Highly ordered thiol-ethylene bridged Periodic Mesoporous Organosilicas were synthesized directly from a homemade thiol-functionalized bis-silane precursor. These high surface area materials contain up to 4.3 mmol/g sulfur functions in the walls and can adsorb up to 1183 mg/g mercury ions. Raman spectroscopy reveals the existence of thiol and disulfide moieties. These groups have been evaluated by a combination of Raman spectroscopy, Ellman’s reagent and elemental analysis. The adsorption of mercury ions was evidenced by different techniques, including Raman, XPS and porosimetry, which indicate that thiol groups are highly accessible to mercury. Scanning transmission electron microscopy combined with EDX showed an even homogenous distribution of the sulfur atoms throughout the structure, and have revealed for the first time that a fraction of the adsorbed mercury is forming thiolate nanocrystals in the pores. The adsorbent is highly selective for mercury and can be regenerated and reused multiple times, maintaining its structure and functionalities and showing only a marginal loss of adsorption capacity after several runs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000407188200040 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 12 Open Access OpenAccess
Notes D.E. thanks the F.W.O. Flanders (Fund Scientific Research) for a postdoctoral grant (3E10813W). J.O. acknowledges also F.W.O. Flanders, research project G006813N, and the research Board of Ghent University, UGent GOA (Concerted Research Actions) (grant 01G00710) for financial support. F. J. R.-S. acknowledges funding of this research by the Spanish Ministry of Economy and Competitiveness (Project MAT2013-44463-R), Andalusian Regional Government (FQM-346 group), and Feder Funds. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. Approved Most recent IF: 6.065
Call Number EMAT @ emat @ c:irua:144433 Serial 4624
Permanent link to this record