|   | 
Details
   web
Records
Author Li, Z.; Covaci, L.; Marsiglio, F.
Title Impact of Dresselhaus versus Rashba spin-orbit coupling on the Holstein polaron Type A1 Journal article
Year (down) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 20 Pages 205112-205112,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We utilize an exact variational numerical procedure to calculate the ground-state properties of a polaron in the presence of Rashba and linear Dresselhaus spin-orbit coupling. We find that when the linear Dresselhaus spin-orbit coupling approaches the Rashba spin-orbit coupling, the Van Hove singularity in the density of states will be shifted away from the bottom of the band and finally disappear when the two spin-orbit couplings are tuned to be equal. The effective mass will be suppressed; the trend will become more significant for low phonon frequency. The presence of two dominant spin-orbit couplings will make it possible to tune the effective mass with more varied observables.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303794900003 Publication Date 2012-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by the Flemish Science Foundation (FWO-Vl), and by the Canadian Institute for Advanced Research (CIfAR). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99121 Serial 1558
Permanent link to this record
 

 
Author Li, Z.; Covaci, L.; Berciu, M.; Baillie, D.; Marsiglio, F.
Title Impact of spin-orbit coupling on the Holstein polaron Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 19 Pages 195104-195104,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of a Rashba-like spin-orbit interaction. Our results corroborate previous work performed with the momentum average approximation and with weak-coupling perturbation theory. We find that spin-orbit coupling increases the effective mass in the regime with weak electron-phonon coupling, and decreases the effective mass in the regimes of intermediate and strong electron-phonon coupling. Analytical strong-coupling perturbation theory results confirm our numerical results in the small-polaron regime. A large amount of spin-orbit coupling can lead to a significant lowering of the polaron effective mass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000290162500001 Publication Date 2011-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by Alberta Ingenuity, by the Flemish Science Foundation (FWO-Vl), and by the Canadian Institute for Advanced Research (CIfAR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89718 Serial 1561
Permanent link to this record
 

 
Author Doğan, F.; Covaci, L.; Kim, W.; Marsiglio, F.
Title Emerging nonequilibrium bound state in spin-current–local-spin scattering Type A1 Journal article
Year (down) 2009 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 80 Issue 10 Pages 104434
Keywords A1 Journal article
Abstract Magnetization reversal is a well-studied problem with obvious applicability in computer hard drives. One can accomplish a magnetization reversal in at least one of two ways: application of a magnetic field or through a spin current. The latter is more amenable to a fully quantum-mechanical analysis. We formulate and solve the problem whereby a spin current interacts with a ferromagnetic Heisenberg spin chain, to eventually reverse the magnetization of the chain. Spin flips are accomplished through both elastic and inelastic scattering. A consequence of the inelastic-scattering channel, when it is no longer energetically possible, is the occurrence of a nonequilibrium bound state, which is an emergent property of the coupled local plus itinerant spin system. For certain definite parameter values the itinerant spin lingers near the local spins for some time, before eventually leaking out as an outwardly diffusing state. This phenomenon results in spin-flip dynamics and filtering properties for this type of system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000270383100077 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ Serial 4436
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Dogan, F.; Marsiglio, F.
Title Quantum mechanics of spin transfer in coupled electron-spin chains Type A1 Journal article
Year (down) 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 79 Issue 6 Pages 67004
Keywords A1 Journal article
Abstract The manner in which spin-polarized electrons interact with a magnetized thin film is currently described by a semi-classical approach. This in turn provides our present understanding of the spin transfer, or spin torque phenomenon. However, spin is an intrinsically quantum-mechanical quantity. Here, we make the first strides towards a fully quantum-mechanical description of spin transfer through spin currents interacting with a Heisenberg-coupled spin chain. Because of quantum entanglement, this requires a formalism based on the density matrix approach. Our description illustrates how individual spins in the chain time-evolve as a result of spin transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000250409500023 Publication Date 2007-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links
Impact Factor 1.957 Times cited 3 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ Serial 4430
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F.
Title Impurity scattering of wave packets on a lattice Type A1 Journal article
Year (down) 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 74 Issue 20 Pages 205120
Keywords A1 Journal article
Abstract Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet travels differently in a lattice than in the continuum. We describe quantum scattering in a one-dimensional lattice and illustrate characteristics of quantum transport such as resonant transmission. In particular we examine the transport characteristics of a random trimer model. We demonstrate the real-time propagation of a wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in a spin-chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction between an incoming electron and a spin chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000242409400030 Publication Date 2006-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4428
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F.
Title Hidden symmetries of electronic transport in a disordered one-dimensional lattice Type A1 Journal article
Year (down) 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 73 Issue 19 Pages 195109
Keywords A1 Journal article
Abstract Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here, we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array of correlated impurities. In particular we show that particles transmit through an impurity array in identical fashion, regardless of the direction of traversal. The demonstration of this fact is straightforward in the continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss the time evolution of these scattering states, to delineate regions (in time and space) where the aforementioned symmetry is violated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237950400042 Publication Date 2006-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4429
Permanent link to this record
 

 
Author Covaci, L.; Marsiglio, F.
Title Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers Type A1 Journal article
Year (down) 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 73 Issue 1 Pages 014503
Keywords A1 Journal article
Abstract Recent measurements of the Josephson critical current through LSCO/LCO/LSCO thin films showed an unusually large proximity effect. Using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian we describe the proximity effect in weak links between a superconductor with critical temperature T-c and one with critical temperature T-c('), where T-c > T-c('). The weak link (N-') is therefore a superconductor above its own critical temperature and the superconducting regions are considered to have either s-wave or d-wave symmetry. We note that the proximity effect is enhanced due to the presence of superconducting correlations in the weak link. The dc Josephson current is calculated, and we obtain a nonzero value for temperatures greater than T-c(') for sizes of the weak links that can be almost an order of magnitude greater than the conventional coherence length. Considering pockets of superconductivity in the N-' layer, we show that this can lead to an even larger effect on the Josephson critical current by effectively shortening the weak link.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000235009000103 Publication Date 2006-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4427
Permanent link to this record