|   | 
Details
   web
Records
Author Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G.
Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
Year (down) 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl
Volume 8 Issue 3 Pages 034017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000411460400001 Publication Date 2017-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.808 Times cited 6 Open Access OpenAccess
Notes Approved Most recent IF: 4.808
Call Number UA @ lucian @ c:irua:146741 Serial 4785
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Luisier, M.; Radu, I.P.; Houssa, M.
Title On the electrostatic control achieved in transistors based on multilayered MoS2 : a first-principles study Type A1 Journal article
Year (down) 2017 Publication Journal of applied physics Abbreviated Journal
Volume 121 Issue 4 Pages 044505
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, the electrostatic control in metal-oxide-semiconductor field-effect transistors based on MoS2 is studied, with respect to the number of MoS2 layers in the channel and to the equivalent oxide thickness of the gate dielectric, using first-principles calculations combined with a quantum transport formalism. Our simulations show that a compromise exists between the drive current and the electrostatic control on the channel. When increasing the number of MoS2 layers, a degradation of the device performances in terms of subthreshold swing and OFF currents arises due to the screening of the MoS2 layers constituting the transistor channel. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393480100030 Publication Date 2017-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152673 Serial 8329
Permanent link to this record