|   | 
Details
   web
Records
Author Hoat, D.M.; Duy Khanh Nguyen; Bafekry, A.; Vo Van On; Ul Haq, B.; Hoang, D.-Q.; Cocoletzi, G.H.; Rivas-Silva, J.F.
Title Developing feature-rich electronic and magnetic properties in the beta-As monolayer for spintronic and optoelectronic applications by C and Si doping : a first-principles study Type A1 Journal article
Year (down) 2021 Publication Surfaces and interfaces Abbreviated Journal
Volume 27 Issue Pages 101534
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, the carbon (C) and silicon (Si) doping and codoping effects on beta-arsenene (As) monolayer structural, electronic, and magnetic properties have been comprehensively investigated using first-principles calculations. The studied two-dimensional (2D) materials exhibit good stability. Pristine beta-As single layer is an indirect gap semiconductor with a band gap of 1.867(2.441) eV as determined by PBE(HSE06) functional. Due to the difference in atomic size and electronic interactions, C and Si substitution induces a significant local structural distortion. Depending upon dopant concentration and doping sites, feature-rich electronic properties including non-magnetic semiconductor, magnetic semiconductor and half-metallicity may be obtained, which result from p-p interactions. High spin-polarization at the Fermi level vicinity and significant magnetism suggest As:1C, As:2C, As:1Si, As:2Si, and As:CSi systems as prospective spintronic 2D materials. While, the C-C, Si-Si, and C-Si dimer doping decreases electronic band gap, making the layer more suitable for applications in optoelectronic devices. Results presented herein may suggest an efficient approach to create novel multi-functional 2D materials from beta-As monolayer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000711791100002 Publication Date 2021-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:184138 Serial 6979
Permanent link to this record
 

 
Author Hoang, D.-Q.; Korneychuk, S.; Sankaran, K.J.; Pobedinskas, P.; Drijkoningen, S.; Turner, S.; Van Bael, M.K.; Verbeeck, J.; Nicley, S.S.; Haenen, K.
Title Direct nucleation of hexagonal boron nitride on diamond : crystalline properties of hBN nanowalls Type A1 Journal article
Year (down) 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 127 Issue Pages 17-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride (hBN) nanowalls were deposited by unbalanced radio frequency sputtering on (100)-oriented silicon, nanocrystalline diamond films, and amorphous silicon nitride (Si3N4) membranes. The hBN nanowall structures were found to grow vertically with respect to the surface of all of the substrates. To provide further insight into the nucleation phase and possible lattice distortion of the deposited films, the structural properties of the different interfaces were characterized by transmission electron microscopy. For Si and Si3N4 substrates, turbostratic and amorphous BN phases form a clear transition zone between the substrate and the actual hBN phase of the bulk nanowalls. However, surprisingly, the presence of these phases was suppressed at the interface with a nanocrystalline diamond film, leading to a direct coupling of hBN with the diamond surface, independent of the vertical orientation of the diamond grain. To explain these observations, a growth mechanism is proposed in which the hydrogen terminated surface of the nanocrystalline diamond film leads to a rapid formation of the hBN phase during the initial stages of growth, contrary to the case of Si and Si3N4 substrates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ lucian @ c:irua:142398 Serial 4645
Permanent link to this record
 

 
Author Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K.
Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
Year (down) 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 16 Issue 7 Pages 3699-3708
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379456700020 Publication Date 2016-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 8 Open Access
Notes Approved Most recent IF: 4.055
Call Number UA @ lucian @ c:irua:144690 Serial 4652
Permanent link to this record