|   | 
Details
   web
Records
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C.
Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
Year (down) 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater
Volume 350 Issue Pages 128859-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000848227000001 Publication Date 2022-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:189820 Serial 7128
Permanent link to this record
 

 
Author de Barros, A.G.; Hasheminejad, N.; Kampen, J.K.; Vanlanduit, S.; Vuye, C.
Title Noise barriers as a road traffic noise intervention in an urban environment Type P1 Proceeding
Year (down) 2021 Publication Abbreviated Journal
Volume Issue Pages 1-10
Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)
Abstract Intending to tackle road traffic noise in urban environments, noise barriers have been proven to effectively reduce environmental noise levels, leading to positive effects on noise perception by the exposed population. This work assesses the impacts of replacing an obsolete noise barrier in a site near a highway. The effects of this change were monitored via a combination of field surveys, acoustic measurements and noise maps. The results have shown that even though the barrier replacement led to a 4.1 dB reduction in the LA,eq,(15 min.), the annoyance levels of the respondents increased. Possibly, the expectations regarding the improvement of the noise barrier were not met, after a history of complaints. Additionally, existing exposure-response relationships were not successful in predicting the annoyance levels in this particular case. In this dataset, noise annoyance presented a weak link with reported health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Questions regarding the COVID-19 pandemic showed that even though the respondents were spending more time at home, they were less annoyed due to road traffic noise in the period when circulation restrictions were in place.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-989-53387-0-2 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180105 Serial 7004
Permanent link to this record