|   | 
Details
   web
Records
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A.
Title Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
Year (down) 2023 Publication Journal of visualized experiments Abbreviated Journal
Volume Issue 201 Pages e65563-30
Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001127854400015 Publication Date 2023-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:200770 Serial 9019
Permanent link to this record
 

 
Author Grieb, T.; Tewes, M.; Schowalter, M.; Müller-Caspary, K.; Krause, F.F.; Mehrtens, T.; Hartmann, J.-M.; Rosenauer, A.
Title Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation Type A1 Journal article
Year (down) 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 184 Issue B Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('The chemical composition of four Si1-xGex layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si1-xGex in STEM. (C) 2017 Elsevier B.V. All rights reserved.'));
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000417779800004 Publication Date 2017-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access Not_Open_Access
Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. RO2057/11-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:148500 Serial 4893
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L.
Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
Year (down) 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue Pages 124505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000312829400128 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:136433 Serial 4510
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B.
Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
Year (down) 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue 2 Pages 265-267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303382700005 Publication Date 2011-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 3 Open Access
Notes Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:136430 Serial 4497
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D.
Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
Year (down) 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume 26 Issue 12 Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000300151300010 Publication Date 2011-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.305 Times cited Open Access
Notes Approved Most recent IF: 2.305; 2011 IF: 1.723
Call Number UA @ lucian @ c:irua:136427 Serial 4508
Permanent link to this record