|   | 
Details
   web
Records
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
Year (down) 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 144 Issue Pages 115428-6
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000857051700007 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:191500 Serial 7148
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of edge groups on the electronic transport properties of tetrapodal diazatriptycene molecule Type A1 Journal article
Year (down) 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 141 Issue Pages 115212-115216
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We conduct ballistic transport calculations to study the electronic transport properties of diazatriptycene molecule which can be self-assembled on metallic surfaces with uniform coverage and upright orientation of the functional head group. Due to its structural asymmetry, the molecule shows a clear current rectification, where the level of the rectification depends on the nature of the head group. For example, current rectification can be increased by more than a factor of 2 by anchoring the molecules to the electrode by CN functional group or introducing insulating CH2 group between the thiol end group and the adjacent phenyl ring. Our findings show the possibility of creating self-assembled monolayer of DAT molecules with controlled electronic transport properties through functionalization of the head group.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000806548600006 Publication Date 2022-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:189041 Serial 7147
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C.
Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
Year (down) 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000617664900001 Publication Date 2021-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited Open Access OpenAccess
Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526
Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708
Permanent link to this record