|   | 
Details
   web
Records
Author Muys, M.; Coppens, J.; Boon, N.; Vlaeminck, S.E.
Title Photosynthetic oxygenation for urine nitrification Type A1 Journal article
Year (down) 2018 Publication Water science and technology Abbreviated Journal
Volume 78 Issue 1 Pages 183-194
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445517100020 Publication Date 2018-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152908 Serial 8381
Permanent link to this record
 

 
Author Decostere, B.; Coppens, J.; Vervaeren, H.; Vlaeminck, S.E.; De Gelder, L.; Boon, N.; Nopens, I.; Van Hulle, S.W.H.
Title Kinetic exploration of intracellular nitrate storage in marine microalgae Type A1 Journal article
Year (down) 2017 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal
Volume 52 Issue 14 Pages 1303-1311
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study, a recently developed model accounting for intracellular nitrate storage kinetics was thoroughly studied to understand and compare the storage capacity of Phaeodactylum tricornutum and Amphora coffeaeformis. In the first stage the identifiability of the biokinetic parameters was examined. Next, the kinetic model was calibrated for both microalgal species based on experimental observations during batch growth experiments. Two kinetic parameters were calibrated, namely the maximum specific growth rate (mu(max)) and the nitrate storage rate (k(sto)). A significant difference was observed for the nitrate storage rate between both species. For P. tricornutum, the nitrate storage rate was much higher (k(sto) = 0.036m(3) g(-1) DW d(-1)) compared to A. coffeaeformis (k(sto) = 0.0004m(3) g(-1) DW d(-1)). This suggests that P. tricornutum has a more efficient nitrate uptake ability and intracellular nitrate storage capacity and also indicates the need for determination of k(sto) in order to quantify nitrate storage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000415634300004 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1093-4529; 1532-4117 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:147467 Serial 8137
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E.
Title Follow the N and P road : high-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management Type A1 Journal article
Year (down) 2016 Publication Resources, conservation and recycling Abbreviated Journal
Volume 115 Issue Pages 9-21
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Resource-efficient nutrient management is key to secure food production in the context of a growing global population, rising resource scarcity and increasing pressure on the environment. To map the potential towards increasing nutrient use efficiencies and reduce environmental losses, a high-resolution insight of the nitrogen (N) and phosphorus (P) nutrient streams is pivotal. In this study, a substance flow analysis for N and P is presented for the nutrient intensive region of Flanders (6,211,065 inhabitants) in Belgium for the year 2009. A set of 160 nutrient fluxes was quantified throughout 21 economic and environmental compartments, with a particular focus on 10 waste management processes. A total nutrient load of 20 kg N cap(-1) yr(-1) (ca. 73% to the air and 28% to surface waters) and 0.53 kg P cap(-1) yr(-1) (to surface waters) is emitted to the environment; with crop and livestock production as the main contributors (49% of N and 36% of P). The food supply chain revealed a fertilizer-to-consumer efficiency of 14% for N as well as for P, with important losses embedded in waste streams such as excess manure. Advanced manure and waste processing facilities nevertheless offer the opportunity for enhanced nutrient recycling to increase the nutrient use efficiencies and reduce the dependency of inorganic fertilizers. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384852500002 Publication Date 2016-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:137229 Serial 7977
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E.
Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
Year (down) 2016 Publication Bioresource technology Abbreviated Journal
Volume 211 Issue Pages 41-50
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375186700006 Publication Date 2016-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:139913 Serial 8307
Permanent link to this record
 

 
Author Sui, Y.; Alloul, A.; Muys, M.; Makyeme, M.; Coppens, J.; Verstraete, W.; Vlaeminck, S.E.
Title Invigorating the renaissance of single cell protein : safe opportunities for nutrient recovery and reuse as feed ingredient Type P3 Proceeding
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages 12 p. T2 - WEF/IWA Nutrient Removal and Recovery C
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151128 Serial 8130
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E.
Title The nitrogen and phosphorus budget of Flanders : a tool for efficient resource management Type P3 Proceeding
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151142 Serial 8308
Permanent link to this record