|   | 
Details
   web
Records
Author Dubrovinskaia, N.; Dubrovinsky, L.; Solopova, N.A.; Abakumov, A.; Turner, S.; Hanfland, M.; Bykova, E.; Bykov, M.; Prescher, C.; Prakapenka, V.B.; Petitgirard, S.; Chuvashova, I.; Gasharova, B.; Mathis, Y.-L.; Ershov, P.; Snigireva, I.; Snigirev, A.
Title Terapascal static pressure generation with ultrahigh yield strength nanodiamond Type A1 Journal article
Year (down) 2016 Publication Science Advances Abbreviated Journal
Volume 2 Issue 7 Pages e1600341-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (similar to 460 GPa at a confining pressure of similar to 70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381805300029 Publication Date 2016-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190527 Serial 8647
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S.
Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
Year (down) 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
Volume 8 Issue 8 Pages 501-508
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.
Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000374534100019 Publication Date 2016-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 25.87 Times cited 51 Open Access
Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87
Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L.
Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
Year (down) 2014 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 26 Issue 48 Pages 8185-8191
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000346480800016 Publication Date 2014-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 27 Open Access
Notes Approved Most recent IF: 19.791; 2014 IF: 17.493
Call Number UA @ lucian @ c:irua:122230 Serial 1408
Permanent link to this record
 

 
Author Gou, H.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Van Tendeloo, G.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; Liermann, H.P.; Dubrovinsky, L.; Dubrovinskaia, N.;
Title Peierls distortion, magnetism, and high hardness of manganese tetraboride Type A1 Journal article
Year (down) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 6 Pages 064108-64109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure, high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 features a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 mu(B)/f.u., ferromagnetic spin correlations, and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332405000002 Publication Date 2014-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115819 Serial 2571
Permanent link to this record
 

 
Author Gou, H.; Dubrovinskaia, N.; Bykova, E.; Tsirlin, A.A.; Kasinathan, D.; Schnelle, W.; Richter, A.; Merlini, M.; Hanfland, M.; Abakumov, A.M.; Batuk, D.; Van Tendeloo, G.; Nakajima, Y.; Kolmogorov, A.N.; Dubrovinsky, L.;
Title Discovery of a superhard iron tetraboride superconductor Type A1 Journal article
Year (down) 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 15 Pages 157002-157005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000325371500011 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 127 Open Access
Notes Countatoms Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:110820 Serial 729
Permanent link to this record