Number of records found: 66
 | 
Citations
 | 
   web
Resonant magnetopolaron effects due to interface phonons in GaAs/AlGaAs multiple quantum well structures”. Wang YJ, Nickel HA, McCombe BD, Peeters FM, Shi JM, Hai GQ, Wu XG, Eustis TJ, Schaff W, Physical review letters 79, 3226 (1997)
toggle visibility
Resonant magnetopolaron effects in GaAs/AlGaAs MQWs at high magnetic fields”. Wang YJ, Nickel HA, McCombe BD, Peeters FM, Hai GQ, Shi JM, Devreese JT, Wu XG, , 797 (1997)
toggle visibility
High-field cyclotron resonance and electron-phonon interaction in modulation-doped multiple quantum well structures”. Wang YJ, Jiang ZX, McCombe BD, Peeters FM, Wu XG, Hai GQ, Eusfis TJ, Schaff W, Physica: B : condensed matter 256/258, 215 (1998). http://doi.org/10.1016/S0921-4526(98)00572-9
toggle visibility
Interface effects on magnetopolarons in GaAs/AlxGa1-xAs quantum wells at high magnetic fields”. Hai GQ, Peeters FM, Studart N, Wang YJ, McCombe BD, Physical review : B : condensed matter and materials physics 58, 7822 (1998). http://doi.org/10.1103/PhysRevB.58.7822
toggle visibility
Resonant magnetopolaron effect in GaAs/AlGaAs multiple quantum well structures”. Wang YJ, Nichel HA, McCombe BD, Peeters FM, Shi JM, Hai GQ, Wu XG, Eustis TJ, Schaff W, Physica. E: Low-dimensional systems and nanostructures 2, 161 (1998). http://doi.org/10.1016/S1386-9477(98)00035-6
toggle visibility
Blocking of the polaron effect and spin-split cyclotron resonance in a two-dimensional electron gas”. Wu XG, Peeters FM, Wang YJ, McCombe BD, Physical review letters 84, 4934 (2000). http://doi.org/10.1103/PhysRevLett.84.4934
toggle visibility
Strong resonant intersubband magnetopolaron effect in heavily modulation-doped GaAs/AlGaAs single quantum wells at high magnetic fields”. Wang YJ, Leem YA, McCombe BD, Wu XG, Peeters FM, Jones E, Reno J, Lee XY, Jiang HW, Physica. E: Low-dimensional systems and nanostructures 6, 195 (2000). http://doi.org/10.1016/S1386-9477(99)00086-7
toggle visibility
Strong three-level resonant magnetopolaron effect due to the intersubband coupling in heavily modulation-doped GaAs/AlxGa1-xAs single quantum wells at high magnetic-fields”. Wang YJ, Leem YA, McCombe BD, Wu XG, Peeters FM, Jones ED, Reno JR, Lee XY, Jiang HW, Physical Review B 64, 161303 (2001). http://doi.org/10.1103/PhysRevB.64.161303
toggle visibility
Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst”. Ning Y, Zhang X, Wang Y, Sun Y, Shen L, Yang X, Van Tendeloo G, Chemical physics letters 366, 555 (2002). http://doi.org/10.1016/S0009-2614(02)01647-0
toggle visibility
Electron effective mass and resonant polaron effect in CdTe/CdMgTe quantum wells”. Karczewski G, Wojtowicz T, Wang Y-J, Wu X, Peeters FM, Physica status solidi: B: basic research T2 –, 10th International Conference on II-VI Compounds, SEP 09-14, 2001, BREMEN, GERMANY 229, 597 (2002). http://doi.org/10.1002/1521-3951(200201)229:1<597::AID-PSSB597>3.0.CO;2-P
toggle visibility
Controlling the diameters in large-scale synthesis of single-walled carbon nanotubes by catalytic decomposition of CH4”. Li Y, Zhang X, Shen L, Luo J, Tao X, Liu F, Xu G, Wang Y, Geise HJ, Van Tendeloo G, Chemical physics letters 398, 276 (2004). http://doi.org/10.1016/j.cplett.2004.09.068
toggle visibility
Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas”. Zhang Y-R, Xu X, Zhao S-X, Bogaerts A, Wang Y-N, Physics of plasmas 17, 113512 (2010). http://doi.org/10.1063/1.3519515
toggle visibility
Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti, x = 1, 2) : preparation and microstructural characterisation”. Müller M, Turner S, Lebedev OI, Wang Y, Van Tendeloo G, Fischer RA, European journal of inorganic chemistry , 1876 (2011). http://doi.org/10.1002/ejic.201001297
toggle visibility
Coherent relativistic wake wave of a charged object moving steadily in a plasma”. Wang Y, Yu MY, Chen ZY, Physica scripta 84, 025501 (2011). http://doi.org/10.1088/0031-8949/84/02/025501
toggle visibility
Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma”. Si X-J, Zhao S-X, Xu X, Bogaerts A, Wang Y-N, Physics of plasmas 18, 033504 (2011). http://doi.org/10.1063/1.3566007
toggle visibility
Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/AR plasmas used for deep silicon etching applications”. Mao M, Wang YN, Bogaerts A, Journal of physics: D: applied physics 44, 435202 (2011). http://doi.org/10.1088/0022-3727/44/43/435202
toggle visibility
Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe)”. Canioni R, Roch-Marchal C, Sécheresse F, Horcajada P, Serre C, Hardi-Dan M, Férey G, Grenèche J-M, Lefebvre F, Chang J-S, Hwang Y-K, Lebedev O, Turner S, Van Tendeloo G, Journal of materials chemistry 21, 1226 (2011). http://doi.org/10.1039/c0jm02381g
toggle visibility
ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption”. Esken D, Noei H, Wang Y, Wiktor C, Turner S, Van Tendeloo G, Fischer RA, Journal of materials chemistry 21, 5907 (2011). http://doi.org/10.1039/c1jm10091b
toggle visibility
Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas”. Liu Y-X, Zhang Q-Z, Liu J, Song Y-H, Bogaerts A, Wang Y-N, Applied physics letters 101, 114101 (2012). http://doi.org/10.1063/1.4751984
toggle visibility
The effect of F2 attachment by low-energy electrons on the electron behaviour in an Ar/CF4 inductively coupled plasma”. Zhao S-X, Gao F, Wang Y-N, Bogaerts A, Plasma sources science and technology 21, 025008 (2012). http://doi.org/10.1088/0963-0252/21/2/025008
toggle visibility
Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 1 : transient behaviour of electrodynamics and power deposition”. Zhang Y-R, Xu X, Bogaerts A, Wang Y-N, Journal of physics: D: applied physics 45, 015202 (2012). http://doi.org/10.1088/0022-3727/45/1/015202
toggle visibility
Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 2 : radial uniformity of the plasma characteristics”. Zhang Y-R, Xu X, Bogaerts A, Wang Y-N, Journal of physics: D: applied physics 45, 015203 (2012). http://doi.org/10.1088/0022-3727/45/1/015203
toggle visibility
Fluid simulation of the phase-shift effect in Ar/CF4 capacitively coupled plasmas”. Zhang Y-R, Bogaerts A, Wang Y-N, Journal of physics: D: applied physics 45, 485204 (2012). http://doi.org/10.1088/0022-3727/45/48/485204
toggle visibility
Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas”. Zhang Q-Z, Zhao S-X, Jiang W, Wang Y-N, Journal of physics: D: applied physics 45, 305203 (2012). http://doi.org/10.1088/0022-3727/45/30/305203
toggle visibility
Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges”. Liu Y-X, Zhang Q-Z, Liu L, Song Y-H, Bogaerts A, Wang Y-N, Plasma sources science and technology 22, 025012 (2013). http://doi.org/10.1088/0963-0252/22/2/025012
toggle visibility
Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma”. Zhao S-X, Gao F, Wang Y-N, Bogaerts A, Plasma sources science and technology 22, 015017 (2013). http://doi.org/10.1088/0963-0252/22/1/015017
toggle visibility
Heating mechanism in direct current superposed single-frequency and dual-frequency capacitively coupled plasmas”. Zhang Q-Z, Liu Y-X, Jiang W, Bogaerts A, Wang Y-N, Plasma sources science and technology 22, 025014 (2013). http://doi.org/10.1088/0963-0252/22/2/025014
toggle visibility
Heating mode transition in a hybrid direct current/dual-frequency capacitively coupled CF4 discharge”. Zhang Q-Z, Wang Y-N, Bogaerts A, Journal of applied physics 115, 223302 (2014). http://doi.org/10.1063/1.4882297
toggle visibility
Phase modulation in pulsed dual-frequency capacitively coupled plasmas”. Wen D-Q, Zhang Q-Z, Jiang W, Song U-H, Bogaerts A, Wang Y-N, Journal of applied physics 115, 233303 (2014). http://doi.org/10.1063/1.4884225
toggle visibility
Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles”. Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G, The journal of physical chemistry: C : nanomaterials and interfaces 118, 16209 (2014). http://doi.org/10.1021/jp5037266
toggle visibility