toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bogaerts, R.; van Esch, A.; van Bockstal, L.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Allen, S.J. doi  openurl
  Title Experimental study of the energy band structure of Sc1-xErxAs layers in pulsed magnetic fields Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume (down) 184 Issue Pages 232-235  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100047 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 9 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5791 Serial 1143  
Permanent link to this record
 

 
Author Leadley, D.R.; Nicholas, R.J.; Xu, W.; Peeters, F.M.; Devreese, J.T.; Foxon, C.T.; Harris, J.J. doi  openurl
  Title High-field magneto-resistance in GaAs-GaAlAs heterojunctions Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume (down) 184 Issue Pages 197-201  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100039 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 4 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5746 Serial 1428  
Permanent link to this record
 

 
Author van der Burgt, M.; van Esch, A.; Peeters, F.M.; van Hove, M.; Borghs, G.; Herlach, F. doi  openurl
  Title High field transport in high carrier density GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructures Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume (down) 184 Issue Pages 211-215  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100042 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 4 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5792 Serial 1432  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Interface optical phonon mode coupling in GaAs/AlAs quantum wells at high magnetic fields Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume (down) 184 Issue Pages 289-292  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100058 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5741 Serial 1695  
Permanent link to this record
 

 
Author Shi, J.M.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Polaron correction to the D-center in a quantum well Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume (down) 184 Issue Pages 417-421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100082 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 8 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5740 Serial 2662  
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Filed-cooled vortex states in mesoscopic superconducting samples Type A1 Journal article
  Year 2000 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume (down) 180 Issue Pages 426-431  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000087245200080 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 17 Open Access  
  Notes Approved Most recent IF: 1.404; 2000 IF: 1.489  
  Call Number UA @ lucian @ c:irua:28523 Serial 1193  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. openurl 
  Title Excitons and charged excitons in quantum wells Type A1 Journal article
  Year 2000 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A  
  Volume (down) 178 Issue Pages 513-517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000086440500089 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:28520 Serial 1125  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. pdf  doi
openurl 
  Title Ground state of excitons and charged excitons in a quantum well Type A1 Journal article
  Year 2000 Publication Physica status solidi: A: applied research T2 – 6th International Conference on Optics of Excitons in Confined Systems, (OECS-6), AUG 30-SEP 02, 1999, ASCONA, SWITZERLAND Abbreviated Journal Phys Status Solidi A  
  Volume (down) 178 Issue 1 Pages 513-517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A variational calculation of the ground state of a neutral exciton and of positively and negatively charged excitons (trions) in a single quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. Our results are compared with previous theoretical results and with available experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000086440500089 Publication Date 2002-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 16 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103467 Serial 1389  
Permanent link to this record
 

 
Author Dehdast, M.; Valiollahi, Z.; Neek-Amal, M.; Van Duppen, B.; Peeters, F.M.; Pourfath, M. pdf  doi
openurl 
  Title Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume (down) 178 Issue Pages 625-631  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons in ultra thin materials such as few layers of van derWaals heterostructures provide a unique control over light-matter interaction at the nanoscale and with various applications in flat optics. Natural hyperbolic surface plasmons have been observed on thin films of WTe2 in the light wavelength range of 16-23 mu m (similar or equal to 13-18 THz) [Nat. Commun. 11, 1158 (2020)]. Using time-dependent density functional theory, it is found that carbon doped monolayer phosphorene (beta-allotrope of carbon phosphide monolayer) exhibits natural hyperbolic plasmons at frequencies above similar or equal to 5 THz which is not observed in its parent materials, i.e. monolayer of black phosphorous and graphene. Furthermore, we found that by electrostatic doping the plasmonic frequency range can be extended to the mid-infrared. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648729800057 Publication Date 2021-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 6 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:179033 Serial 7039  
Permanent link to this record
 

 
Author Bogaerts, R.; van Bockstal, L.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Allen, S.J. pdf  doi
openurl 
  Title Magnetotransport measurements on thin Ga1-xErxAs epitaxial films in pulsed magnetic fields Type A1 Journal article
  Year 1992 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume (down) 177 Issue Pages 425-429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnet0transport measurements in pulsed fields up to 46 T and at temperatures between 1.4 and 210 K have been performed on thin semimetallic epitaxial layers of Sc1-xErxAs buried inside insulating GaAs. A consistent description is obtained of the magnetic field dependence of the Hall resistance and the different frequencies of the Shubnikov-de Hass oscillations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1992HP25000089 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 12 Open Access  
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #  
  Call Number UA @ lucian @ c:irua:3025 Serial 1935  
Permanent link to this record
 

 
Author van der Burgt, M.; Thoen, P.; Herlach, F.; Peeters, F.M.; Harris, J.J.; Foxon, C.T. doi  openurl
  Title The quantized Hall effect in pulsed magnetic fields Type A1 Journal article
  Year 1992 Publication Physica: B Abbreviated Journal Physica B  
  Volume (down) 177 Issue Pages 409-413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992HP25000086 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 14 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:3026 Serial 2770  
Permanent link to this record
 

 
Author Masir, M.R.; Moldovan, D.; Peeters, F.M. pdf  doi
openurl 
  Title Pseudo magnetic field in strained graphene : revisited Type A1 Journal article
  Year 2013 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume (down) 175 Issue Pages 76-82  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We revisit the theory of the pseudo magnetic field as induced by strain in graphene using the tight- binding approach. A systematic expansion of the hopping parameter and the deformation of the lattice vectors is presented from which we obtain an expression for the pseudo magnetic field for low energy electrons. We generalize and discuss previous results and propose a novel effective Hamiltonian. The contributions of the different terms to the pseudo field expression are investigated for a model triaxial strain profile and are compared with the full solution. Our work suggests that the previous proposed pseudo magnetic field expression is valid up to reasonably high strain (15%) and there is no K-dependent pseudo-magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000329538200010 Publication Date 2013-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 57 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EURO- CORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem programme of the Flemish government. Approved Most recent IF: 1.554; 2013 IF: 1.698  
  Call Number UA @ lucian @ c:irua:114805 Serial 2737  
Permanent link to this record
 

 
Author Dantas, D.S.; Chaves, A.; Farias, G.A.; Ramos, A.C.A.; Peeters, F.M. pdf  doi
openurl 
  Title Low-dimensional confining structures on the surface of helium films suspended on designed cavities Type A1 Journal article
  Year 2013 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume (down) 173 Issue 3-4 Pages 207-226  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the formation of quantum confined structures on the surface of a liquid helium film suspended on a nanostructured substrate. We show theoretically that, by nanostructuring the substrate, it is possible to change the geometry of the liquid helium surface, opening the possibility of designing and controlling the formation of valleys with different shapes. By applying an external electric field perpendicular to the substrate plane, surface electrons can be trapped into these valleys, as in a quantum dot. We investigate how the external parameters, such as the electric field strength and the height of the liquid helium bath, can be tuned to control the energy spectrum of the trapped surface electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000324820300008 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 1 Open Access  
  Notes ; This work has received financial support from the Brazilian National Research Council (CNPq), Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (Funcap), CAPES and Pronex/CNPq/Funcap. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the bilateral project between CNPq and FWO-Vl. ; Approved Most recent IF: 1.3; 2013 IF: 1.036  
  Call Number UA @ lucian @ c:irua:111140 Serial 1845  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume (down) 171 Issue Pages 551-559  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500058 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 11 Open Access OpenAccess  
  Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:175014 Serial 6700  
Permanent link to this record
 

 
Author Chen, X.; Bouhon, A.; Li, L.; Peeters, F.M.; Sanyal, B. url  doi
openurl 
  Title PAI-graphene : a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume (down) 170 Issue Pages 477-486  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the reported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of 7.0 x 10(5) m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band inversions take place at G leading to the annihilation of the Dirac nodes demonstrating the possibility of strain-controlled conversion of a topological semimetal into a semiconductor. Finally we formulate the bulk-boundary correspondence of the topological nodal phase in the form of a generalized Zak-phase argument finding a perfect agreement with the topological edge states computed for different edge-terminations. (C) 2020 The Author(s). Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579779800047 Publication Date 2020-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 27 Open Access  
  Notes ; We thank S. Nahas, for helpful discussions. This work is supported by the project grant (2016e05366) and Swedish Research Links program grant (2017e05447) from the Swedish Research Council, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), the FLAG-ERA project TRANS 2D TMD. Linyang Li acknowledges financial support from the Natural Science Foundation of Hebei Province (Grant No. A2020202031). X.C. thanks China scholarship council for financial support (No. 201606220031). X.C. and B.S. acknowledge SNIC-UPPMAX, SNIC-HPC2N, and SNIC-NSC centers under the Swedish National Infrastructure for Computing (SNIC) resources for the allocation of time in high-performance supercomputers. Moreover, supercomputing resources from PRACE DECI-15 project DYNAMAT are gratefully acknowledged. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:173513 Serial 6577  
Permanent link to this record
 

 
Author Arsoski, V.; Tadic, M.; Peeters, F.M. doi  openurl
  Title Electric field tuning of the optical excitonic Aharonov-Bohm effect in nanodots grown by droplet epitaxy Type A1 Journal article
  Year 2013 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume (down) T157 Issue Pages 014002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Neutral excitons in axially symmetric GaAs nanodots embedded in an (Al, Ga) As matrix, which are formed by the droplet epitaxy technique, are investigated theoretically. An electric field perpendicular to the nanodot base results in both a vertical and an in-plane exciton polarization, which is beneficial for the appearance of the excitonic Aharonov-Bohm effect. In the range of low magnetic fields (below 5 Tesla), we found that the bright and dark exciton states can cross twice. This results in oscillations of the photoluminescence intensity with magnetic field, which are a striking manifestation of the optical excitonic Aharonov-Bohm effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000332504600003 Publication Date 2013-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.28 Times cited Open Access  
  Notes ; This work was supported by the EU Network of Excellence: SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2013 IF: 1.296  
  Call Number UA @ lucian @ c:irua:128901 Serial 4594  
Permanent link to this record
 

 
Author Hamid, I.; Jalali, H.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Abnormal in-plane permittivity and ferroelectricity of confined water : from sub-nanometer channels to bulk Type A1 Journal article
  Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume (down) 154 Issue 11 Pages 114503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dielectric properties of nano-confined water are important in several areas of science, i.e., it is relevant in the dielectric double layer that exists in practically all heterogeneous fluid-based systems. Molecular dynamics simulations are used to predict the in-plane dielectric properties of confined water in planar channels of width ranging from sub-nanometer to bulk. Because of suppressed rotational degrees of freedom near the confining walls, the dipole of the water molecules tends to be aligned parallel to the walls, which results in a strongly enhanced in-plane dielectric constant (epsilon (parallel to)) reaching values of about 120 for channels with height 8 angstrom < h < 10 angstrom. With the increase in the width of the channel, we predict that epsilon (parallel to) decreases nonlinearly and reaches the bulk value for h > 70 angstrom. A stratified continuum model is proposed that reproduces the h > 10 angstrom dependence of epsilon (parallel to). For sub-nanometer height channels, abnormal behavior of epsilon (parallel to) is found with two orders of magnitude reduction of epsilon (parallel to) around h similar to 7.5 angstrom, which is attributed to the formation of a particular ice phase that exhibits long-time (similar to mu s) stable ferroelectricity. This is of particular importance for the understanding of the influence of confined water on the functioning of biological systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629831900001 Publication Date 2021-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.965  
  Call Number UA @ admin @ c:irua:177579 Serial 6967  
Permanent link to this record
 

 
Author Baskurt, M.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Stable single-layers of calcium halides (CaX₂, X = F, Cl, Br, I) Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume (down) 152 Issue 16 Pages 164116-164118  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531819100001 Publication Date 2020-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited 10 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the TUBITAK under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.4; 2020 IF: 2.965  
  Call Number UA @ admin @ c:irua:169543 Serial 6615  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.; Helm, M. doi  openurl
  Title Landau levels and magnetopolaron effect in dilute GaAs:N Type A1 Journal article
  Year 2010 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume (down) 150 Issue 33/34 Pages 1575-1579  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic-field dependence of the energy spectrum of GaAs doped with nitrogen impurities is investigated. Our theoretical model is based on the phenomenological band anticrossing model (BAC) which we extended in order to include the magnetic field and electronphonon interaction. Due to the highly localized nature of the nitrogen state, we find that the energy levels are very different from those of pure GaAs. The polaron correction results in a lower cyclotron resonance energy as compared to pure GaAs. The magneto-absorption spectrum exhibits series of asymmetric peaks close to the cyclotron energy ħωc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000280949900019 Publication Date 2010-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.554 Times cited Open Access  
  Notes ; This work is supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles Program (IAP)-Belgian State Science Policy. M.H. is grateful to O. Drachenko and H. Schneider for numerous discussions. ; Approved Most recent IF: 1.554; 2010 IF: 1.981  
  Call Number UA @ lucian @ c:irua:84580 Serial 1771  
Permanent link to this record
 

 
Author Arsoski, V.; Čukarić, N.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Exciton states in a nanocup in the presence of a perpendicular magnetic field Type A1 Journal article
  Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume (down) T149 Issue Pages 014054-014054,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The exciton states in a strained (In,Ga)As/GaAs nanocup are theoretically determined. We explore how the nanocup bottom thickness (t) affects the magnetic field dependence of the exciton energy. Strain distribution is computed by the continuum mechanical model under the approximation of isotropic elasticity. The exciton wave functions are expanded into products of the electron and hole envelope functions. For small t, the exciton ground state has zero orbital momentum and exhibits small oscillations of the second derivative when the magnetic field increases. When t approaches the value of the cup height, however, the exciton levels exhibit angular momentum transitions, whose behavior is similar to that for type-II quantum dots. Small oscillations of the oscillator strength for exciton recombination are found when the magnetic field increases. An increase in thickness of the nanocup bottom has only a small effect on those oscillations for the optically active exciton states, but the exciton ground state becomes dark when the magnetic field increases. Hence, the results of our calculations show that an increase in thickness of the nanocup bottom transforms the exciton ground energy level dependence on magnetic field from the one characteristic of type-I rings to the one characteristic of type-II dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500055 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 2 Open Access  
  Notes ; This work was supported by the EU Network of Excellence SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99135 Serial 1117  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Interband optical absorption in a circular graphene quantum dot Type A1 Journal article
  Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume (down) T149 Issue Pages 014056-014056,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac-Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions. We found that the dot with zigzag edges displays a zero-energy state in the energy spectra while this is not the case for the IMBCs. For both boundary conditions, the confinement becomes dominated by the magnetic field, where the energy levels converge to the Landau levels as the magnetic field increases. The effect of boundary conditions on the electron-and hole-energy states is found to affect the interband absorption spectra, where we found larger absorption in the case of IMBCs. The selection rules for interband optical transitions are determined and discussed for both boundary conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500057 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 5 Open Access  
  Notes ; This work was supported by the EuroGraphene program of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99136 Serial 1688  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. doi  openurl
  Title Magneto-ballistic transport through micro-structured junctions on a curved two-dimensional electron gas Type A1 Journal article
  Year 2009 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume (down) 149 Issue 19/20 Pages 778-780  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the ballistic transport in a two-dimensional electron gas, which is rolled up as a tube and is micro-structured into a Hall bar. A uniform magnetic field applied to such a curved surface results in a non-uniform perpendicular magnetic field. The bend resistances become asymmetric with respect to the orientation of the magnetic field due to the varying magnetic field along the junction. The resistance asymmetry is strongly affected by corrugation due to the varying mobility along different crystallographic directions. We compare our results with a recent transport measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000266149900011 Publication Date 2009-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.554; 2009 IF: 1.837  
  Call Number UA @ lucian @ c:irua:77580 Serial 1897  
Permanent link to this record
 

 
Author Kandemir, A.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via spectrum Type A1 Journal article
  Year 2018 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume (down) 149 Issue 8 Pages 084707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations, we study the structural and phononic properties of the recently synthesized Janus type single layers of molybdenum dichalcogenides. The Janus MoSSe single layer possesses 2H crystal structure with two different chalcogenide sides that lead to out-of-plane anisotropy. By virtue of the asymmetric structure of the ultra-thin Janus type crystal, we induced the out-of-plane anisotropy to show the distinctive vertical pressure effect on the vibrational properties of the Janus material. It is proposed that for the corresponding Raman active optical mode of the Janus structure, the phase modulation and the magnitude ratio of the strained atom and its first neighbor atom adjust the distinctive change in the eigen-frequencies and Raman activity. Moreover, a strong variation in the Raman activity of the Janus structure is obtained under bivertical and univertical strains. Not only eigen-frequency shifts but also Raman activities of the optical modes of the Janus structure exhibit distinguishable features. This study reveals that the vertical anisotropic feature of the Janus structure under Raman measurement allows us to distinguish which side of the Janus crystal interacts with the externals (substrate, functional adlayers, or dopants). Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000444035800044 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 11 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from TUBITAK under Project No. 117F095. F.M.P. was supported by the FLAG-ERA-TRANS<INF>2D</INF>TMD. ; Approved Most recent IF: 2.965  
  Call Number UA @ lucian @ c:irua:153711UA @ admin @ c:irua:153711 Serial 5115  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M. pdf  doi
openurl 
  Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume (down) 148 Issue 148 Pages 60-66  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500011 Publication Date 2015-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133151 Serial 4163  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S. pdf  doi
openurl 
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume (down) 148 Issue 148 Pages 2-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500002 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133150 Serial 4165  
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Transitions between different superconducting states in mesoscopic disks Type A1 Journal article
  Year 2000 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume (down) 144 Issue Pages 266-271  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000087245200047 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 24 Open Access  
  Notes Approved Most recent IF: 1.404; 2000 IF: 1.489  
  Call Number UA @ lucian @ c:irua:28521 Serial 3701  
Permanent link to this record
 

 
Author Peeters, F.M.; Schweigert, V.A.; Baelus, B.J.; Deo, P.S. doi  openurl
  Title Vortex matter in mesoscopic superconducting disks and rings Type A1 Journal article
  Year 2000 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume (down) 144 Issue Pages 255-262  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000087245200045 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 45 Open Access  
  Notes Approved Most recent IF: 1.404; 2000 IF: 1.489  
  Call Number UA @ lucian @ c:irua:28522 Serial 3871  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R. pdf  doi
openurl 
  Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume (down) 144 Issue 144 Pages 285-293  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300036 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 3 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292  
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H. pdf  doi
openurl 
  Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
  Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume (down) 144 Issue Pages 115428-6  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000857051700007 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:191500 Serial 7148  
Permanent link to this record
 

 
Author Euan-Diaz, E.; Herrera-Velarde, S.; Misko, V.R.; Peeters, F.M.; Castaneda-Priego, R. doi  openurl
  Title Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential Type A1 Journal article
  Year 2015 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume (down) 142 Issue 142 Pages 024902  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the ordering and dynamics of interacting colloidal particles confined by a parabolic potential. By means of Brownian dynamics simulations, we find that by varying the magnitude of the trap stiffness, it is possible to control the dimension of the system and, thus, explore both the structural transitions and the long-time self-diffusion coefficient as a function of the degree of confinement. We particularly study the structural ordering in the directions perpendicular and parallel to the confinement. Further analysis of the local distribution of the first-neighbors layer allows us to identify the different structural phases induced by the parabolic potential. These results are summarized in a structural state diagram that describes the way in which the colloidal suspension undergoes a structural re-ordering while increasing the confinement. To fully understand the particle dynamics, we take into account hydrodynamic interactions between colloids; the parabolic potential constricts the available space for the colloids, but it does not act on the solvent. Our findings show a non-linear behavior of the long-time self-diffusion coefficient that is associated to the structural transitions induced by the external field. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000348129700053 Publication Date 2015-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 7 Open Access  
  Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), PIFI 3.4 – PROMEP, and CONACyT (Grant Nos. 61418/2007, 102339/2008, Ph.D. scholarship 230171/2010). R.C.-P. also acknowledges financial support provided by the Marcos Moshinsky fellowship 2013-2014. The authors also thank to the General Coordination of Information and Communications Technologies (CGSTIC) at Cinvestav for providing HPC resources on the Hybrid Cluster Super-computer Xiuhcoatl, which have contributed partially to the research results reported in this paper. ; Approved Most recent IF: 2.965; 2015 IF: 2.952  
  Call Number c:irua:123832 Serial 3267  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: