toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting) Type A1 Journal article
  Year 2019 Publication Materials & design Abbreviated Journal Mater Design  
  Volume (down) 165 Issue Pages 107598  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to increase the production rate during selective laser melting (SLM), a high power laser with a large beam diameter is used to build fully dense Hastelloy X parts. Compared to SLM with a low power and small diameter beam, the productivity was increased from 6 mm3/s to 16 mm3/s, i.e. 2.6 times faster. Besides the productivity benefit, the influence of the use of a high power laser on the rapid solidification microstructure and concomitant material properties is highlighted. The current paper compares the microstructure and tensile properties of Hastelloy X built with low and high power lasers. The use of a high power laser results in wider and shallower melt pools inducing an enhanced morphological and crystallographic texture along the building direction (BD). In addition, the increased heat input results in coarser sub-grains or high density dislocation walls for samples processed with a high power laser. Additionally, the influence of hot isostatic pressing (HIP) as a post-processing technique was evaluated. After HIP, the tensile fracture strain increased as compared to the strain in the as-built state and helped in obtaining competitive mechanical properties as compared to conventionally processed Hastelloy X parts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458259300020 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 15 Open Access OpenAccess  
  Notes This research was supported by the ENGIE Research and Technology Division. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine. S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. Approved Most recent IF: 4.364  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157469 Serial 5176  
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume (down) 153 Issue Pages 366-371  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472696900040 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access  
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: