toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Peeters, H.; Raes, A.; Verbruggen, S.W. pdf  doi
openurl 
  Title Plasmonic photocatalytic coatings with self-cleaning, antibacterial, air and water purifying properties tested according to ISO standards Type A1 Journal article
  Year 2024 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal  
  Volume 451 Issue Pages 115529-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract ISO 10678:2010, ISO 22197–1 and 2, ISO 27447:2019 and ISO 27448:2009 for the photocatalytic degradation of organic dyes (methylene blue), air pollution (NOx and acetaldehyde), bacteria (E. coli and S. aureus) and solid organic fouling (oleic acid) are performed on plasmon-embedded TiO2 thin films on Borofloat® glass, as well as the commercially available titania-based self-cleaning glass PilkingtonActivTM. These standardised protocols measure the performance for the four main applications of photocatalytic materials: water purification, air purification, antibacterial and self-cleaning activity, respectively. The standards are performed exactly as prescribed to measure the activity under UV irradiation, and also in a slightly adapted manner to measure the performance under simulated solar light or visible light. Performing experiments according to ISO standards, enables an objective comparison amongst samples tested here, as well as with results from literature. This is a major asset compared to the myriad of customised setups used in laboratories worldwide that hinder a fair comparison. We point at the importance of meticulously following the ISO instructions, as we have noticed that multiple published studies adopting the ISO standards too often deviate from these protocols, thereby nullifying the added value of standardized testing. Following the ISO tests to the letter, we have demonstrated the superior performance of a previously developed plasmonic titania coating with fully embedded gold-silver nanoparticles towards all four application areas. Furthermore, our empirical data strongly support the need for a nuanced understanding of standardized testing, to ensure accurate assessment of photocatalytic materials. An examination of the ISO standards used in this work reveals notable drawbacks, including concerns about the reliability of the methylene blue degradation protocol, the issues of HNO3 accumulation in the NOx removal test, and limitations in assessing antibacterial activity and water contact angles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1010-6030 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203203 Serial 9075  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Mul, G. pdf  doi
openurl 
  Title Editorial overview : photocatalysis 2022 shining light on a diversity of research opportunities Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 42 Issue Pages 100838-2  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034184800001 Publication Date 2023-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:197220 Serial 8854  
Permanent link to this record
 

 
Author Minja, A.C.; Ag, K.R.; Raes, A.; Borah, R.; Verbruggen, S.W. doi  openurl
  Title Recent progress in developing non-noble metal-based photocathodes for solar green hydrogen production Type A1 Journal article
  Year 2024 Publication Current Opinion in Chemical Engineering Abbreviated Journal  
  Volume 43 Issue Pages 101000  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocathodes play a vital role in photoelectrocatalytic water splitting by acting as catalysts for reducing protons to hydrogen gas when exposed to light. Recent advancements in photocathodes have focused on addressing the limitations of noble metal-based materials. These noble metal-based photocathodes rely on expensive and scarce metals such as platinum and gold as cocatalysts or ohmic back contacts, respectively, rendering the final system less sustainable and costly when applied at scale. This mini-review summarizes the important recent progress in the development of non-noble metal-based photocathodes and their performance in the hydrogen evolution reaction during photoelectrochemical (PEC) water splitting. These advancements bring non-noble metal-based photocathodes closer to their noble metal-based counterparts in terms of performance, thereby paving the way forward toward industrial-scale photoelectrolyzers or PEC cells for green hydrogen production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3398 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202625 Serial 9080  
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
  Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 209 Issue Pages 494-500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000311190500058 Publication Date 2012-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473  
  Call Number UA @ lucian @ c:irua:105185 Serial 2609  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Ribbens, S.; Tytgat, T.; Hauchecorne, B.; Smits, M.; Meynen, V.; Cool, P.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title The benefit of glass bead supports for efficient gas phase photocatalysis : case study of a commercial and a synthesised photocatalyst Type A1 Journal article
  Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 174 Issue 1 Pages 318-325  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the field of photocatalytic air purification, the immobilisation of catalyst particles on support surfaces without loss of photon efficiency is an important challenge. Therefore, an immobilisation method involving a one-step suspension coating of pre-synthesised photocatalysts on glass beads was applied. The various benefits are exemplified in the gas phase photodegradation of ethylene. Coating of glass beads is easy, fast, cheap and offers a more efficient alternative to bulk catalyst pellets. Furthermore, this coating procedure allows to use porous, pre-synthesised catalysts to their full potential, as the surface area and morphology of the initial powder is barely altered after coating, in strong contrast to pelletising. With this technique it became possible to study the gas phase photocatalytic activity of commercial titanium dioxide, trititanate nanotubes and mixed phase anatase/trititanate nanotubes in a packed bed reactor towards the degradation of ethylene without changing the catalyst properties. Coating of glass beads with the photocatalyst revealed the superior activity of the as-prepared nanotubes, compared to TiO2 Aerolyst® 7710 in gaseous phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296950300041 Publication Date 2011-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 39 Open Access  
  Notes ; The author wishes to acknowledge the Research Foundation of Flanders (FWO) for the financial support. Evonik is greatly thanked for supplying the TiO<INF>2</ INF> Aerolyst (R) 7710 pellets. ; Approved Most recent IF: 6.216; 2011 IF: 3.461  
  Call Number UA @ admin @ c:irua:93364 Serial 5929  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Dirckx, J.J.J.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Surface photovoltage measurements : a quick assessment of the photocatalytic activity? Type A1 Journal article
  Year 2013 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 209 Issue Pages 215-220  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Surface photovoltage (SPV) measurements can contribute to a better understanding of electronic properties of photocatalysts under illumination. Direct linking of SPV data to the actual photocatalytic activity remains troublesome. This work aims to discuss SPV measurements from a photocatalytic point of view. By means of several application-based scenarios we illustrate that the trend between SPV and photocatalysis strongly depends on parameters such as the crystal structure, surface modifications, morphology and humidity. This makes the interpretation far from straightforward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319498800035 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 4.636; 2013 IF: 3.309  
  Call Number UA @ admin @ c:irua:106520 Serial 5995  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 156 Issue Pages 116-121  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336013200014 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 84 Open Access  
  Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:115552 Serial 2646  
Permanent link to this record
 

 
Author Hauchecorne, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic degradation of ethylene : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 105 Issue 1/2 Pages 111-116  
  Keywords A1 Journal article; Engineering sciences. Technology; Molecular Spectroscopy (MolSpec); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, the reaction mechanism of the photocatalytic oxidation of ethylene is elucidated by means of an in-house developed FTIR in situ reactor. This reactor allowed us to look at the catalytic surface at the moment the reactions actually occur. This new approach gave some exciting new insights in how ethylene is photocatalytically oxidised. It was found that there is a change in dipole moment of the ethylene molecule when it is brought in the neighbourhood of the catalyst. From this finding, a hypothesis was formulated on how the CC-bond from ethylene will break. It was found that the aforementioned interaction between the catalyst and the molecule, allows the excited electrons from the UV irradiated catalyst to occupy the lowest unoccupied molecular orbital (LUMO) of the ethylene molecule through a process known as backdonation. Following this hypothesis, it was found that the degradation occurs through the formation of two intermediates: formaldehyde and formic acid, for which formaldehyde is bound in two different ways (coordinatively and as bidentate). Finally CO2 and H2O are found as end products, resulting in the complete mineralisation of the pollutant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291907400013 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 29 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research; Evonik, who delivered the photocatalyst and the 3rd grade bachelor students of the bio-science engineering department, who accompanied us in this work: Britt Berghmans, Margot Goossens, Ozlem Kocak and Laurent Van Linden. ; Approved Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:89256 Serial 5978  
Permanent link to this record
 

 
Author Jammaer, J.; Aprile, C.; Verbruggen, S.W.; Lenaerts, S.; Pescarmona, P.P.; Martens, J.A. doi  openurl
  Title A non-aqueous synthesis of TiO2SiO2 composites in supercritical CO2 for the photodegradation of pollutants Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 10 Pages 1457-1463  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296497400010 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 15 Open Access  
  Notes ; The authors acknowledge sponsorship from CECAT and Methusalem (long-term financing of the Flemish government). We thank Dr. E. Gobechiya for assistance with XRD measurements and A. Lemaire for assistance with mercury porosimetry measurements. ; Approved Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ admin @ c:irua:93363 Serial 5973  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
  Year 2020 Publication ChemPhotoChem Abbreviated Journal  
  Volume 4 Issue 4 Pages 300-306  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520100400001 Publication Date 2020-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:165912 Serial 5771  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: