toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D. pdf  doi
openurl 
  Title Multiphysics modelling of membrane electroporation in irregularly shaped cells Type P1 Proceeding
  Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal  
  Volume Issue Pages 2992-2998  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Electroporation is a non-thermal electromagnetic phenomenon widely used in medical diseases treatment. Different mathematical models of electroporation have been proposed in literature to study pore evolution in biological membranes. This paper presents a nonlinear dispersive multiphysic model of electroporation in irregular shaped biological cells in which the spatial and temporal evolution of the pores size is taken into account. The model solves Maxwell and asymptotic Smoluchowski equations and it describes the dielectric dispersion of cell media using a Debye-based relationship. Furthermore, the irregular cell shape has been modeled using the Gielis superformula. Taking into account the cell in mitosis phase, the electroporation process has been studied comparing the numerical results pertaining the model with variable pore radius with those in which the pore radius is supposed constant. The numerical analysis has been performed exposing the biological cell to a rectangular electric pulse having duration of 10 μs. The obtained numerical results highlight considerable differences between the two different models underling the need to include into the numerical algorithm the differential equation modeling the spatial and time evolution of the pores size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000550769302159 Publication Date 2020-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169170 Serial 8288  
Permanent link to this record
 

 
Author Gielis, J. pdf  doi
openurl 
  Title Double helix of phyllotaxis : analysis of the geometric model of plant morphogenesis, by Boris Rozin Type Review
  Year 2021 Publication Quarterly Review Of Biology Abbreviated Journal Q Rev Biol  
  Volume 96 Issue 2 Pages 139-140  
  Keywords Review; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-5770; 1539-7718 ISBN Additional Links UA library record  
  Impact Factor 4.25 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.25  
  Call Number UA @ admin @ c:irua:178829 Serial 7824  
Permanent link to this record
 

 
Author Decostere, B.; Coppens, J.; Vervaeren, H.; Vlaeminck, S.E.; De Gelder, L.; Boon, N.; Nopens, I.; Van Hulle, S.W.H. pdf  doi
openurl 
  Title Kinetic exploration of intracellular nitrate storage in marine microalgae Type A1 Journal article
  Year 2017 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume 52 Issue 14 Pages 1303-1311  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, a recently developed model accounting for intracellular nitrate storage kinetics was thoroughly studied to understand and compare the storage capacity of Phaeodactylum tricornutum and Amphora coffeaeformis. In the first stage the identifiability of the biokinetic parameters was examined. Next, the kinetic model was calibrated for both microalgal species based on experimental observations during batch growth experiments. Two kinetic parameters were calibrated, namely the maximum specific growth rate (mu(max)) and the nitrate storage rate (k(sto)). A significant difference was observed for the nitrate storage rate between both species. For P. tricornutum, the nitrate storage rate was much higher (k(sto) = 0.036m(3) g(-1) DW d(-1)) compared to A. coffeaeformis (k(sto) = 0.0004m(3) g(-1) DW d(-1)). This suggests that P. tricornutum has a more efficient nitrate uptake ability and intracellular nitrate storage capacity and also indicates the need for determination of k(sto) in order to quantify nitrate storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415634300004 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1093-4529; 1532-4117 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147467 Serial 8137  
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. doi  openurl
  Title Study of positive and negative plasma catalytic oxidation of ethylene Type A1 Journal article
  Year 2017 Publication Environmental technology Abbreviated Journal Environ Technol  
  Volume 38 Issue 12 Pages 1554-1561  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15kV. This shows the potential of plasma catalysis as indoor air purification technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402018900010 Publication Date 2016-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 1 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for supporting and funding this research. ; Approved Most recent IF: 1.751  
  Call Number UA @ admin @ c:irua:144351 Serial 5993  
Permanent link to this record
 

 
Author Christis, M.; Geerken, T.; Vercalsteren, A.; Vrancken, K.C.M. pdf  doi
openurl 
  Title Improving footprint calculations of small open economies : combining local with multi-regional input-output tables Type A1 Journal article
  Year 2017 Publication Economic systems research Abbreviated Journal  
  Volume 29 Issue 1 Pages 25-47  
  Keywords A1 Journal article; Economics; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In a small, open and resource-poor economy, import and export dependency have an ever-growing impact on local policy decisions, which makes local (environmental) policy-makers increasingly depend on global data. This increases the interest in models that link local production and consumption data to global production, trade and environmental data. The recent increase in availability of global environmentally extended multi-regional input-output tables (EE-MRIO tables) provides an opportunity to link them with existing local environmentally extended input-output tables (EE-RIO tables). These combined tables make it possible (1) to analyse the links between local and global production and consumption and (2) to study global value chains, material use and environmental impacts simultaneously. However, estimations using input-output (I-O) analyses contain errors due to imperfect databases. In this article the magnitude of specification, aggregation and time errors are estimated and compared. The results show the need to combine local datasets with multi-regional ones and show that highest detailed (country and sector levels) as well as time series of I-O tables are the way forward for using I-O analyses in local policy-making. The paper provides guidance on trading off investments in model adoption and/or extension and the reliability of estimation results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395062800002 Publication Date 2016-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-5314 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:142012 Serial 8071  
Permanent link to this record
 

 
Author Dasgupta, N.; Borah, R.; Mishra, P.; Gupta, A.K.; Chhabra, R.P. pdf  doi
openurl 
  Title Combined effects of blockage and yield stress on drag and heat transfer from an in-line array of three spheres Type A1 Journal article
  Year 2019 Publication Journal of dispersion science and technology Abbreviated Journal  
  Volume 40 Issue 6 Pages 855-873  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work reports results on the drag and heat transfer from an in-line array of three isothermal spheres falling in a cylindrical confinement filled with Bingham plastic fluids. The effects of dimensionless parameters, such as the Reynolds number (1 ≤ Re ≤ 100), Prandtl number (1 ≤ Pr ≤ 100), Bingham number (0 ≤ Bn ≤ 100), blockage ratio (2 ≤ β ≤ 4) and sphere-to-sphere distance (1.5 ≤ t ≤ 6) have been elucidated. The flow and heat transfer characteristics were analysed in terms of yielded/unyielded regions, streamline and isotherm contours, drag coefficient, pressure coefficient, and local and average Nusselt number. Broadly, the drag coefficient shows a positive dependence on Bn and sphere-to-sphere distance (t) while it exhibits an inverse dependence on Re and β. On the other hand, the Nusselt number shows a positive dependence on Re, Pr, Bn and β; and a complex dependence on t for each sphere. Simple predictive expressions for the average Nusselt number for each sphere are formulated, thereby enabling its prediction in a new application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467844200010 Publication Date 2018-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0193-2691 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190865 Serial 7680  
Permanent link to this record
 

 
Author Van Hoey, S.; Nopens, I.; van der Kwast, J.; Seuntjens, P. doi  openurl
  Title Dynamic identifiability analysis-based model structure evaluation considering rating curve uncertainty Type A1 Journal article
  Year 2015 Publication Journal of hydrologic engineering Abbreviated Journal  
  Volume 20 Issue 5 Pages 04014072  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract When applying hydrological models, different sources of uncertainty are present, and evaluations of model performances should take these into account to assess model outcomes correctly. Furthermore, uncertainty in the discharge observations complicates the model identification, both in terms of model structure and parameterization. In this paper, the authors compare two different lumped model structures (PDM and NAM) considering uncertainty coming from the rating curve. Limits of acceptability for the model simulations were determined based on derived uncertainty bounds of the discharge observations. The authors applied the DYNamic Identifiability Approach (DYNIA) to identify structural failure of both models and to evaluate the configuration of their structures. In general, similar model performances are observed. However, the model structures tend to behave differently in the course of time, as revealed by the DYNIA approach. Based on the analyses performed, the probability based soil storage representation of the PDM model outperforms the NAM structure. The incorporation of the observation error did not prevent the DYNIA analysis to identify potential model structural deficiencies that are limiting the representation of the seasonal variation, primarily indicated by shifting regions of parameter identifiability. As such, the proposed approach is able to indicate where deficiencies are found and model improvement is needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353995400002 Publication Date 2014-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1084-0699 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:126056 Serial 7829  
Permanent link to this record
 

 
Author Watson, G.; Kummamuru, N.B.; Verbruggen, S.W.; Perreault, P.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Van Der Voort, P. doi  openurl
  Title Engineering of hollow periodic mesoporous organosilica nanorods for augmented hydrogen clathrate formation Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal  
  Volume 11 Issue 47 Pages 26265-26276  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hydrogen (H2) storage, in the form of clathrate hydrates, has emerged as an attractive alternative to classical storage methods like compression or liquefaction. Nevertheless, the sluggish enclathration kinetics along with low gas storage capacities in bulk systems is currently impeding the progress of this technology. To this end, unstirred systems coupled with porous materials have been shown to tackle the aforementioned drawbacks. In line with this approach, the present study explores the use of hydrophobic periodic organosilica nanoparticles, later denoted as hollow ring-PMO (HRPMO), for H2 storage as clathrate hydrates under mild operating conditions (5.56 mol% THF, 7 MPa, and 265–273 K). The surface of the HRPMO nanoparticles was carefully decorated/functionalized with THF-like moieties, which are well-known promoter agents in clathrate formation when applied in classical, homogeneous systems. The study showed that, while the non-functionalized HRPMO can facilitate the formation of binary H2-THF clathrates, the incorporation of surface-bound promotor structures enhances this process. More intriguingly, tuning the concentration of these surface-bound promotor agents on the HRPMO led to a notable effect on solid-state H2 storage capacities. An increase of 3% in H2 storage capacity, equivalent to 0.26 wt%, along with a substantial increase of up to 28% in clathrate growth kinetics, was observed when an optimal loading of 0.14 mmol g−1 of promoter agent was integrated into the HRPMO framework. Overall, the findings from this study highlight that such tuning effects in the solid-state have the potential to significantly boost hydrate formation/growth kinetics and H2 storage capacities, thereby opening new avenues for the ongoing development of H2 clathrates in industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108752600001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201007 Serial 9031  
Permanent link to this record
 

 
Author Chinnabathini, V.C.; Dingenen, F.; Borah, R.; Abbas, I.; van der Tol, J.; Zarkua, Z.; D'Acapito, F.; Nguyen, T.H.T.; Lievens, P.; Grandjean, D.; Verbruggen, S.W.; Janssens, E. doi  openurl
  Title Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 14 Pages 6696-6708  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968631100001 Publication Date 2023-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196040 Serial 7988  
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L. doi  openurl
  Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 15 Pages 8364-8370  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529201500029 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:169578 Serial 6550  
Permanent link to this record
 

 
Author Van Eynde, E.; Hu, Z.-Y.; Tytgat, T.; Verbruggen, S.W.; Watte, J.; Van Tendeloo, G.; Van Driessche, I.; Blust, R.; Lenaerts, S. doi  openurl
  Title Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources Type A1 Journal article
  Year 2016 Publication Environmental science : nano Abbreviated Journal Environ Sci-Nano  
  Volume 3 Issue 5 Pages 1052-1061  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present a green, biological production route for silica-titania photocatalysts using diatom microalgae. Diatoms are single-celled, eukaryotic microalgae (2-2000 mu m) that self-assemble soluble silicon (Si(OH)(4)) into intricate silica cell walls, called frustules. These diatom frustules are formed under ambient conditions and consist of hydrated silica with specific 3D morphologies and micro-meso or macroporosity. A remarkable characteristic of diatoms is their ability to bioaccumulate soluble titanium from cell culture medium and incorporate them into their nanostructured silica cell wall. Controlled cultivation of the diatom Pinnularia sp. on soluble titanium in a batch process resulted in the biological immobilisation of titanium dioxide in the porous 3D architecture of the frustules. Six different titanium sources are tested. The silica-titania frustules were isolated by treating the harvested Pinnularia cells with nitric acid (65%) or by high temperature treatment. Thermal annealing converted the amorphous titania into crystalline titania. The produced silica-titania material is evaluated towards photocatalytic activity for acetaldehyde (C2H4O) abatement. Frustules cultivated with TiBaldH showed the highest photocatalytic performance. Comparison of the photocatalytic activity with P25 reveals that P25 has a 4 fold higher photocatalytic activity, but when photocatalytic activity is normalized for titania content, the frustules show double activity. Further material characterization (morphology, crystallinity, surface area and elemental distribution) of the TiBaldH silica-titania frustules provides additional insight into their structure-activity relationship. These natural biosilicatitania materials have excellent properties for photocatalytic purposes, including high surface area (108 m(2) g(-1)) and good porosity, and show reliable immobilization of TiO2 in the ordered structure of the diatom frustule.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000385257900011 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-8153; 2051-8161 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.047 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 6.047  
  Call Number UA @ lucian @ c:irua:144751 Serial 4644  
Permanent link to this record
 

 
Author Tirez, K.; Vanhoof, C.; Bronders, J.; Seuntjens, P.; Bleux, N.; Berghmans, P.; De Brucker, N.; Vanhaecke, F. doi  openurl
  Title Do ICP-MS based methods fulfill the EU monitoring requirements for the determination of elements in our environment? Type A1 Journal article
  Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal  
  Volume 17 Issue 12 Pages 2034-2050  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Undoubtedly, the most important advance in the environmental regulatory monitoring of elements of the last decade is the widespread introduction of ICP-mass spectrometry (ICP-MS) due to standards developed by the European Committee for Standardization. The versatility of ICP-MS units as a tool for the determination of major, minor and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Ti, V and Zn) in surface water, groundwater, river sediment, topsoil, subsoil, fine particulates and atmospheric deposition is illustrated in this paper. Ranges of background concentrations for major, minor and trace elements obtained from a regional case study (Flanders, Belgium) are summarized for all of these environmental compartments and discussed in the context of a harmonized implementation of European regulatory monitoring requirements. The results were derived from monitoring programs in support of EU environmental quality directives and were based on a selection of (non-polluted) background locations. Because of the availability of ICP-MS instruments nowadays, it can be argued that the main hindrance for meeting the European environmental monitoring requirements is no longer the technical feasibility of analysis at these concentration levels, but rather (i) potential contamination during sampling and analysis, (ii) too limited implementation of quality control programs, validating the routinely applied methods (including sampling and low level verification) and (iii) lack of harmonization in reporting of the chemical environmental status between the individual member states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365915600005 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130316 Serial 7821  
Permanent link to this record
 

 
Author Van de Vijver, E.; Van Meirvenne, M.; Vandenhaute, L.; Delefortrie, S.; De Smedt, P.; Saey, T.; Seuntjens, P. doi  openurl
  Title Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar Type A1 Journal article
  Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal  
  Volume 17 Issue 7 Pages 1271-1281  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357793300008 Publication Date 2015-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127130 Serial 8715  
Permanent link to this record
 

 
Author Satyawali, Y.; Van Roy, S.; Roevens, A.; Meynen, V.; Mullens, S.; Jochems, P.; Doyen, W.; Cauwenberghs, L.; Dejonghe, W. pdf  doi
openurl 
  Title Characterization and analysis of the adsorption immobilization mechanism of \beta-galactosidase on metal oxide powders Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal  
  Volume 3 Issue 46 Pages 24054-24062  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of the enzymes plays a vital role in enhancing their applicability in a wide range of applications, thus ensuring the use of sustainable enzymatic processes over the conventional chemical processes on an industrial scale. This study provides the background information for the selection and screening of inorganic metal oxide (MO) powders for their use as fillers in mixed matrix membranes for enzyme immobilization as the future aim. A total of 13 MOs, ranging in size from 0.01 μm to <5 μm, were tested for their performance as a support for enzyme (β-galactosidase) immobilization via adsorption. Alumina appeared to be the best performing MO with the amount and activity of the immobilized enzyme being 64 mg g−1 and up to 288 U g−1, respectively. The amount of immobilized enzyme on alumina (α-Al2O3 C and γ-Al2O3) was >3 times higher than ZrO2 (used as a reference MO in this study). Upon heat treatment at 900 °C, up to 15%, 52% and 42% decline was observed in the amount of immobilized enzyme in case of alumina metal oxides (MOs), ZrO2 and TiO2, respectively. The results suggested that both isoelectric point and surface area of the MO influence the immobilization. The most important observation in this study was that the bonding of the enzyme to the MO surface seems to be mediated by the bonding/interaction of the buffer to the enzyme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326745100030 Publication Date 2013-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111300 Serial 7607  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C. doi  openurl
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 23 Pages 11648-11653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332470000017 Publication Date 2014-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access  
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:117298 Serial 168  
Permanent link to this record
 

 
Author Boënne, W.; Desmet, N.; Van Looy, S.; Seuntjens, P. doi  openurl
  Title Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers Type A1 Journal article
  Year 2014 Publication Environmental science : processes & impacts Abbreviated Journal  
  Volume 16 Issue 6 Pages 1510-1518  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The effects on river water quality of sewer overflows are not well known. Since the duration of the overflow is in the order of magnitude of minutes to hours, continuous measurements of water quality are needed and traditional grab sampling is unable to quantify the pollution loads. The objective of this paper was to demonstrate the applicability of high frequency measurements for assessing the impacts of waste water treatment plants on the water quality of the receiving surface water. In our in situ water quality monitoring setup, two types of multiparameter sensors mounted on a floating fixed platform were used to determine the dynamics of dissolved oxygen, specific conductivity, ammonium-N, nitrate-N and dissolved organic carbon downstream of a waste water treatment plant (WWTP), in combination with data on rainfall, river discharge and WWTP overflow discharge. The monitoring data for water quantity and water quality were used to estimate the pollution load from waste water overflow events and to assess the impact of waste water overflows on the river water quality. The effect of sewer overflow on a small river in terms of N load was shown to be significant. The WWTP overflow events accounted for about 1/3 of the river discharge. The NH4-N loads during overflow events contributed 29% and 21% to the August 2010 and June 2011 load, respectively, in only 8% and 3% of the monthly time span. The results indicate that continuous monitoring is needed to accurately represent the effects of sewer overflows in river systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336841600031 Publication Date 2014-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:118390 Serial 8722  
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S. doi  openurl
  Title Biotemplated diatom silica-titania materials for air purification Type A1 Journal article
  Year 2013 Publication Photochemical & photobiological sciences Abbreviated Journal Photoch Photobio Sci  
  Volume 12 Issue 4 Pages 690-695  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present a novel manufacture route for silicatitania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a solgel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilicatitania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silicatitania photocatalysts using diatoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316572500016 Publication Date 2012-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-905x; 1474-9092 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.344 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 2.344; 2013 IF: 2.939  
  Call Number UA @ admin @ c:irua:106625 Serial 5930  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Masschaele, K.; Moortgat, E.; Korany, T.E.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde Type A1 Journal article
  Year 2012 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume 2 Issue 11 Pages 2311-2318  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The photocatalytic activity of two commercial titanium dioxide powders (Cristal Global, Millennium PC500 and Evonik, P25) is compared towards acetaldehyde degradation in the gas phase. In contrast to the extensive literature available, we found a higher activity for the PC500 than for the P25 coating. Here, we present a comprehensive characterization of the bulk and surface properties of both powders. Our comparison shows that the material properties that dominate the overall photocatalytic activity in gas phase differ from those required for the photodegradation of water-borne pollutants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310863900020 Publication Date 2012-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 33 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for the financial support. J.A.M acknowledges long term funding (Methusalem). ; Approved Most recent IF: 5.773; 2012 IF: 3.753  
  Call Number UA @ admin @ c:irua:105162 Serial 5952  
Permanent link to this record
 

 
Author Jochems, P.; Satyawali, Y.; Diels, L.; Dejonghe, W. doi  openurl
  Title Enzyme immobilization on/in polymeric membranes : status, challenges and perspectives in biocatalytic membrane reactors (BMRs) Type A1 Journal article
  Year 2011 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal  
  Volume 13 Issue 7 Pages 1609-1623  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of enzymes is beneficial in terms of improving the process economics by enabling enzyme re-use and enhancing overall productivity and robustness. Increasingly, membranes are thought to be good supports for enzyme immobilization. These resulting biocatalytic membranes are integrated in reactors known as biocatalytic membrane reactors (BMRs) which enable the integration of biocatalysis and separation. Often the available commercial membranes require modifications to make them suitable for enzyme immobilization. Different immobilization techniques can be used on such suitable membranes, but no general rules exist for making a choice between them. Despite the advantages of BMR application, there are some issues which need to be addressed in order to achieve up-scaling of such systems. In this review, the different aspects of enzyme immobilization on membranes are discussed to show the complexity of this interdisciplinary technology. In addition, the existing issues which require further investigation are highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292450600002 Publication Date 2011-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:89567 Serial 7930  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S. doi  openurl
  Title Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 37 Pages 19142-19145  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gold-silver alloy nanoparticles display surface plasmon resonance (SPR) over a broad range of the UV-vis spectrum. We propose a model to predict the SPR wavelength of gold-silver alloy colloids based on the combined effect of alloy composition and particle size. The SPR wavelength is derived from extinction spectra simulated using available experimental dielectric constant data and accounts for particle size by applying Mie theory. Comparison of calculated values with experimental data evidences the accuracy of the model. The new SPR wavelength estimation tool will be of particular interest for developing dedicated bimetallic plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330162600042 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. JAM. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ admin @ c:irua:114837 Serial 5985  
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Weltens, R.; Vanermen, G.; de Brucker, N.; Diels, L. doi  openurl
  Title Combining HPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assays for detailed monitoring of petroleum hydrocarbon degradation in soil and leaching water Type A1 Journal article
  Year 2009 Publication Environmental science and technology Abbreviated Journal  
  Volume 43 Issue 20 Pages 7651-7657  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract HPLC-GCXGC/FID (high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) and GCXGC/ToF-MS (comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry) were used to study the biodegradation of petroleum hydrocarbons in soil microcosms during 20 weeks. Two soils were studied: one spiked with fresh diesel and one field sample containing weathered diesel-like oil. Nutrient amended and unamended samples were included. Total petroleum hydrocarbon (TPH) levels in spiked soil decreased from 15000 to 7500 mg/kg d.m. and from 12000 to 4000 mg/kg d.m. in the field soil. Linear alkanes and aromatic hydrocarbons were better biodegradable (>60% degraded) than iso-alkanes; cycloalkanes were least degradable (<40%). Aromatic hydrocarbons up to three rings showed better degradability than n-alkanes. GCXGC/ToF-MS analysis of leaching water showed that initially various oxygenated hydrocarbons were produced. Compound peaks seemed to move up and rightward in the GCXGC chromatograms, indicating that more polar and heavier compounds were formed as biodegradation proceeded. Nutrient amendment can increase TPH removal rates, but had adverse effects on ecotoxicity and leaching potential in our experiment. This was explained by observed shifts in the soil microbial community. Ecotoxicity assays showed that residual TPH still inhibited cress (Lepidium sativum) seed germination, but the leaching water was no longer toxic toward luminescent bacteria (Vibrio fischeri).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000270594900014 Publication Date 2009-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:79168 Serial 7683  
Permanent link to this record
 

 
Author Baken, S.; Salaets, P.; Desmet, N.; Seuntjens, P.; Vanlierde, E.; Smolders, E. doi  openurl
  Title Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments Type A1 Journal article
  Year 2015 Publication Environmental science and technology Abbreviated Journal  
  Volume 49 Issue 5 Pages 2886-2894  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The fate of iron (Fe) may affect that of phosphorus (P) and arsenic (As) in natural waters. This study addresses the removal of Fe, P, and As from streams in lowland catchments fed by reduced, Fe-rich groundwater (average: 20 mg Fe L-1). The concentrations of dissolved Fe (<0.45 mu m) in streams gradually decrease with increasing hydraulic residence time (travel time) of the water in the catchment. The removal of Fe from streamwater is governed by chemical reactions and hydrological processes: the oxidation of ferrous iron (Fe(II)) and the subsequent formation of particulate Fe oxyhydroxides proceeds as the water flows through the catchment into increasingly larger streams. The Fe removal exhibits first-order kinetics with a mean half-life of 12 h, a value in line with predictions by a kinetic model for Fe(II) oxidation. The Fe concentrations in streams vary seasonally: they are higher in winter than in summer, due to shorter hydraulic residence time and lower temperature in winter. The removal of P and As is much faster than that of Fe. The average concentrations of P and As in streams (42 mu g P L-1) and 1.4 mu g As L-1) are 1 order of magnitude below those in groundwater (393 mu g P L-1 and 17 mu g As L-1). This removal is attributed to fast sequestration by oxidizing Fe when the water enters oxic environments, possibly by adsorption on Fe oxyhydroxides or by formation of ferric phosphates. The average P and As concentrations in groundwater largely exceed local environmental limits for freshwater (140 mu g P L-1 and 3 mu g As L((-1)), but in streams, they are below these limits. Naturally occurring Fe in groundwater may alleviate the environmental risk associated with P and As in the receiving streams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350611100040 Publication Date 2015-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:125409 Serial 8354  
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
  Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume 58 Issue 28 Pages 12751-12765  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476686000027 Publication Date 2019-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162122 Serial 8416  
Permanent link to this record
 

 
Author Wittner, N.; Vasilakou, K.; Broos, W.; Vlaeminck, S.E.; Nimmegeers, P.; Cornet, I. pdf  doi
openurl 
  Title Investigating the technical and economic potential of solid-state fungal pretreatment at nonsterile conditions for sugar production from poplar wood Type A1 Journal article
  Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Pretreatment is crucial for the conversion of lignocellulose to biofuels. Unlike conventional chemical/physicochemical methods, fungal pretreatment uses white-rot fungi and mild reaction conditions. However, challenges, including substrate sterilization, long duration, and low sugar yields associated with this method, contribute to lower techno-economic performance, an aspect that has rarely been investigated. This study aimed to evaluate the feasibility of fungal pretreatment of nonsterilized poplar wood. Various factors, including inoculum types, fermentation supplements, and cultivation methods, were investigated to optimize the process. A techno-economic assessment of the optimized processes was performed at a full biorefinery scale. The scenario using nonsterilized wood as a substrate, precolonized wood as an inoculum, and a 4 week pretreatment showed a 14.5% reduction in sugar production costs (€2.15/kg) compared to using sterilized wood. Although the evaluation of nonsterilized wood pretreatment showed promising cost reductions, fungal pretreatment remained more expensive than conventional methods due to the significant capital investment required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102138000001 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.2 Times cited Open Access Not_Open_Access: Available from 24.04.2024  
  Notes Approved Most recent IF: 4.2; 2023 IF: 2.843  
  Call Number UA @ admin @ c:irua:200155 Serial 8891  
Permanent link to this record
 

 
Author Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumee, L.F. pdf  doi
openurl 
  Title Nanoporous Dealloyed Metal Materials Processing and Applications?A Review Type A1 Journal article
  Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The development of porous metal materials with pore geometries and sizes at the nanoscale offers promising opportunities for the development of smart responsive interfaces for separation and catalytic applications and as building blocks for complex composite materials. Dealloying is an innovative technique based on selective removal of a sacrificial metal from a metal alloy to engineer surface textures and pores across significant thicknesses. Dealloyed structures may be processed over large scales and for a range of source alloys, offering unprecedented manufacturing opportunities. This review presents the operations and challenges of dealloying routes and discusses avenues for process optimizations and improvements, aiming at the development of scalable nanoporous materials. The potential of dealloyed materials for catalytic and sensing applications is expanded and benchmarked against reference materials. Future prospects and applications of dealloyed materials toward surface reactivity control and pore architecture development are highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918107700001 Publication Date 2023-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.2; 2023 IF: 2.843  
  Call Number UA @ admin @ c:irua:199419 Serial 8904  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Perreault, P.; Lenaerts, S. pdf  doi
openurl 
  Title A new generalized empirical correlation for predicting methane hydrate equilibrium conditions in pure water Type A1 Journal article
  Year 2021 Publication Industrial & Engineering Chemistry Research Abbreviated Journal Ind Eng Chem Res  
  Volume 60 Issue 8 Pages 3474-3483  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to a new generalized empirical correlation for predicting methane (CH4) hydrate equilibrium conditions in pure water. Unlike the conventional thermodynamic approach that involves complex reckoning, the proposed empirical equation is developed by regressing 215 experimental data points from the literature and validating with 45 data points for predicting methane hydrate equilibrium conditions in pure water. The new correlation is proposed for a temperature and pressure range of 273.2–303.48 K and 2.63–72.26 MPa, respectively. The accuracy and performance of the proposed correlation is quantitatively evaluated using statistical error analysis. The proposed correlation was able to estimate CH4 hydrate equilibrium conditions satisfactorily with an R2 of 0.99987. The overall error analysis for the proposed correlation shows fair agreement with the experimental data reported within the literature. Concurrently, the new correlation showed better performance in predicting equilibrium conditions compared to those calculated by other empirical correlations available in the literature within the investigated range. In addition, the proposed empirical equation is also checked to evaluate its efficacy in fitting each set of experimental binary/ternary methane hydrates (BTMH) and binary hydrogen hydrates (BHH) for an accurate representation of equilibrium data over a wide range of composition, pressure, and temperature conditions. A maximum percentage deviation of 0.58% and 0.24% was observed between experimental and calculated equilibrium conditions for BTMH and BHH, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626326200017 Publication Date 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:175862 Serial 7394  
Permanent link to this record
 

 
Author Seuntjens, D.; Van Tendeloo, M.; Chatzigiannidou, I.; Carvajal-Arroyo, J.M.; Vandendriessche, S.; Vlaeminck, S.E.; Boon, N. pdf  doi
openurl 
  Title Synergistic exposure of return-sludge to anaerobic starvation, sulfide and free ammonia to suppress nitrite oxidizing bacteria Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 15 Pages 8725-8732  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A key step toward energy-positive sewage treatment is the development of mainstream partial nitritation/anammox, a nitrogen removal technology where aerobic ammonium-oxidizing bacteria (AerAOB) are desired, while nitrite-oxidizing bacteria (NOB) are not. To suppress NOB, a novel return-sludge treatment was investigated. Single and combined effects of sulfide (0-600 mg S L-1), anaerobic starvation (0-8 days), and a free ammonia (FA) shock (30 mg FA-N L-1 for 1 h) were tested for immediate effects and long-term recovery. AerAOB and NOB were inhibited immediately and proportionally by sulfide, with AerAOB better coping with the inhibition, while the short FA shock and anaerobic starvation had minor effects. Combinatory effects inhibited AerAOB and NOB more strongly. A combined treatment of sulfide (150 mg S L-1), 2 days of anaerobic starvation, and FA shock (30 mg FA-N L-1) inhibited AerAOB 14% more strongly compared to sulfide addition alone, while the AerAOB/NOB activity ratio remained constant. Despite no positive change being observed in the immediate-stress response, AerAOB recovered much faster than NOB, with a nitrite accumulation ratio (effluent nitrite on nitrite + nitrate) peak of 50% after 12 days. Studying long-term recovery is therefore crucial for design of an optimal NOB-suppression treatment, while applying combined stressors regularly may lead toward practical implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441477600073 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152909 Serial 8635  
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E. doi  openurl
  Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal  
  Volume 50 Issue 17 Pages 9781-9790  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382805800097 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138270 Serial 8176  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Blust, R.; Lenaerts, S. pdf  doi
openurl 
  Title Valorization of flue gas by combining photocatalytic gas pretreatment with microalgae production Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 50 Issue 5 Pages 2538-2545  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solubility in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NO in the cultivation broth. The absorbed NOx will form NO2- and NO3- that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371371700048 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:132348 Serial 6003  
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M. doi  openurl
  Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal  
  Volume 31 Issue 13 Pages 4805-4816  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000475408400021 Publication Date 2019-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161225 Serial 8465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: