|   | 
Details
   web
Records
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Adsorption and desorption in confined geometries : a discrete hopping model Type (up) A1 Journal article
Year 2014 Publication The European physical journal. Special topics Abbreviated Journal Eur Phys J-Spec Top
Volume 223 Issue 14 Pages 3243-3256
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346416400015 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355;1951-6401; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.862 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 1.862; 2014 IF: 1.399
Call Number UA @ lucian @ c:irua:122779 Serial 61
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.
Title Current fluctuations in boundary driven diffusive systems in different dimensions : a numerical study Type (up) A1 Journal article
Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
Volume 17 Issue 17 Pages 055023
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use kinetic Monte Carlo simulations to investigate current fluctuations in boundary driven generalized exclusion processes, in different dimensions. Simulation results are in full agreement with predictions based on the additivity principle and the macroscopic fluctuation theory. The current statistics are independent of the shape of the contacts with the reservoirs, provided they are macroscopic in size. In general, the current distribution depends on the spatial dimension. For the special cases of the symmetric simple exclusion process and the zero-range process, the current statistics are the same for all spatial dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000355282700001 Publication Date 2015-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 5 Open Access
Notes ; We thank Christian Van den Broeck for bringing this problem to our attention. We are grateful to Bart Partoens and Carlo Vanderzande for a careful reading of the manuscript. This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G038811N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.786; 2015 IF: 3.558
Call Number c:irua:126405 Serial 592
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; van den Broeck, C.
Title Diffusion of interacting particles in discrete geometries Type (up) A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 11 Pages 110601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000324233800001 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 22 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111176 Serial 699
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties Type (up) A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 5 Pages 052139
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self-and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self-and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000345251500004 Publication Date 2014-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G.0388.11. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, Department EWI. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122134 Serial 700
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Comment on “Generalized exclusion processes : transport coefficients” Type (up) A1 Journal article
Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 93 Issue 93 Pages 046101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374962100019 Publication Date 2016-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 3 Open Access
Notes Approved Most recent IF: 2.366
Call Number UA @ lucian @ c:irua:141060 Serial 4591
Permanent link to this record
 

 
Author Meysman, F.J.R.; Cornelissen, R.; Trashin, S.; Bonne, R.; Hidalgo-Martinez, S.; van der Veen, J.; Blom, C.J.; Karman, C.; Hou, J.-L.; Eachambadi, R.T.; Geelhoed, J.S.; De Wael, K.; Beaumont, H.J.E.; Cleuren, B.; Valcke, R.; van der Zant, H.S.J.; Boschker, H.T.S.; Manca, J.V.
Title A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria Type (up) A1 Journal article
Year 2019 Publication Nature communications Abbreviated Journal Nat Commun
Volume 10 Issue 10 Pages 4120
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Biological electron transport is classically thought to occur over nanometre distances, yet recent studies suggest that electrical currents can run along centimetre-long cable bacteria. The phenomenon remains elusive, however, as currents have not been directly measured, nor have the conductive structures been identified. Here we demonstrate that cable bacteria conduct electrons over centimetre distances via highly conductive fibres embedded in the cell envelope. Direct electrode measurements reveal nanoampere currents in intact filaments up to 10.1 mm long (>2000 adjacent cells). A network of parallel periplasmic fibres displays a high conductivity (up to 79 S cm(-1)), explaining currents measured through intact filaments. Conductance rapidly declines upon exposure to air, but remains stable under vacuum, demonstrating that charge transfer is electronic rather than ionic. Our finding of a biological structure that efficiently guides electrical currents over long distances greatly expands the paradigm of biological charge transport and could enable new bio-electronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000485216900006 Publication Date 2019-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 10 Open Access
Notes ; This research was financially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) through ERC Grant 306933 (F.J.R.M.), the Research Foundation Flanders (FWO project grant G031416N), and the Netherlands Organisation for Scientific Research (VICI grant 016.VICI.170.072 to F.J.R.M.). H.J.E.B., C.J.B. and H.S.J.Z. were supported by the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program. R.B. is supported by an 'aspirant' grant from Research Foundation Flanders (FWO). We thank Laurine Burdorf (UAntwerpen) for help with Thiothrix cultivation, Marlies Nijemeisland (Faculty of Aerospace, TU Delft) for assistance with Raman microscopy, and Jan D'Haen (UHasselt) and Renaat Dasseville (UGent) for help with EM imaging. ; Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:162795 Serial 5451
Permanent link to this record