toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sorée, B.; Magnus, W.; Pourtois, G. doi  openurl
  Title Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 7 Issue 3 Pages 380-383  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We derive an analytical model for the electrostatics and the drive current in a silicon nanowire operating in JFET mode. We show that there exists a range of nanowire radii and doping densities for which the nanowire JFET satisfies reasonable device characteristics. For thin nanowires we have developed a self-consistent quantum mechanical model to obtain the electronic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473800067 Publication Date 2008-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited (up) 70 Open Access  
  Notes Approved Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:89504 Serial 107  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title First-principles study of strained 2D MoS2 Type A1 Journal article
  Year 2014 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 56 Issue Pages 416-421  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic and vibrational properties of 2D honeycomb structures of molybdenum disulfide (MoS2) subjected to strain have been investigated using first-principles calculations based on density functional theory. We have studied the evolution of the electronic properties of bulk and layered MoS2, going down from a few layers up to a mono-layer, and next investigated the effect of bi-axial strain on their electronic structure and vibrational frequencies. Both for tensile and compressive biaxial strains, the shrinking of the energy band-gap of MoS2 with increasing level of applied strain is observed and a transition limit of the system from semiconducting to metallic is predicted to occur for strains in the range of 8-10%. We also found a progressive downshift (upshift) of both the E-2g(1) and A(1g) Raman active modes with increasing level of applied tensile (compressive) strain. Interestingly, significant changes in the curvature of the conduction and valence band near their extrema upon the application of strain are also predicted, with correlated variations of the electron and hole effective masses. These changes present interesting possibilities for engineering the electronic properties of 2D structures of MoS2. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000330815800070 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited (up) 72 Open Access  
  Notes Approved Most recent IF: 2.221; 2014 IF: 2.000  
  Call Number UA @ lucian @ c:irua:115761 Serial 1220  
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. pdf  doi
openurl 
  Title An electric field tunable energy band gap at silicene/(0001) ZnS interfaces Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 15 Issue 11 Pages 3702-3705  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V angstrom(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000315165100002 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited (up) 74 Open Access  
  Notes Approved Most recent IF: 4.123; 2013 IF: 4.198  
  Call Number UA @ lucian @ c:irua:107702 Serial 94  
Permanent link to this record
 

 
Author Clima, S.; Wouters, D.J.; Adelmann, C.; Schenk, T.; Schroeder, U.; Jurczak, M.; Pourtois, G. doi  openurl
  Title Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2 : a first principles insight Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 9 Pages 092906  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The origin of the ferroelectric polarization switching in orthorhombic HfO2 has been investigated by first principles calculations. The phenomenon can be regarded as being the coordinated displacement of four O ions in the orthorhombic unit cell, which can lead to a saturated polarization as high as 53 mu C/cm(2). We show the correlation between the computed polarization reversal barrier and the experimental coercive fields. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000332729200078 Publication Date 2014-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 79 Open Access  
  Notes Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:116873 Serial 1550  
Permanent link to this record
 

 
Author Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Electronic properties of two-dimensional hexagonal germanium Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 8 Pages 082111,1-082111,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of two-dimensional hexagonal germanium, so called germanene, are investigated using first-principles simulations. Consistent with previous reports, the surface is predicted to have a poor metallic behavior, i.e., being metallic with a low density of states at the Fermi level. It is found that biaxial compressively strained germanene is a gapless semiconductor with linear energy dispersions near the K pointslike graphene. The calculated Fermi velocity of germanene is almost independent of the strain and is about 1.7×10<sup>6</sup> m/s, quite comparable to the value in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275027200044 Publication Date 2010-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 86 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:91716 Serial 1004  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas'ev, V.; Stesmans, A. doi  openurl
  Title Vibrational properties of silicene and germanene Type A1 Journal article
  Year 2013 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 6 Issue 1 Pages 19-28  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predict that the silicene (germanene) structure with a small buckling of 0.44 (0.7 ) and bond lengths of 2.28 (2.44 ) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene is characterized by a main peak at about 575 cm(-1), namely the G-like peak. For germanene, the highest peak is at about 290 cm(-1). Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm(-1) for silicene and 270 cm(-1) for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313658800003 Publication Date 2012-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124;1998-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited (up) 105 Open Access  
  Notes Approved Most recent IF: 7.354; 2013 IF: 6.963  
  Call Number UA @ lucian @ c:irua:110106 Serial 3846  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Structural and vibrational properties of amorphous GeO2 from first-principles Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 20 Pages 202110,1-202110,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The structural and vibrational properties of amorphous germanium oxide (a-GeO<sub>2</sub>) are investigated using first-principles calculations based on density functional theory. We first generate an a-GeO<sub>2</sub> structure by first-principles molecular dynamics and analyze its structural properties. The vibrational spectra is then calculated within a density-functional approach. Both static and dynamic properties are in good agreement with experimental data. We next generate defects in our structure (oxygen vacancies with several density and charge states) and consider the most stable atomic configurations, focusing on the vibrational features of threefold coordinated O and divalent Ge centers.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000290812100038 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 226 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:90222 Serial 3202  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. pdf  doi
openurl 
  Title Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 Type A1 Journal article
  Year 2012 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 5 Issue 1 Pages 43-48  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS(2)) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS(2), the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS(2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299085200006 Publication Date 2011-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124;1998-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited (up) 407 Open Access  
  Notes Approved Most recent IF: 7.354; 2012 IF: 7.392  
  Call Number UA @ lucian @ c:irua:96262 Serial 3169  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: