toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bekermann, D.; Gasparotto, A.; Barreca, D.; Bovo, L.; Devi, A.; Fischer, R.A.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G. pdf  doi
openurl 
  Title Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process Type A1 Journal article
  Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 4 Pages 2011-2018  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strongly c-axis oriented ZnO nanorod arrays were grown on Si(100) by plasma enhanced-chemical vapor deposition (PE-CVD) starting from two volatile bis(ketoiminato) zinc(II) compounds Zn[(R′)NC(CH3)═C(H)C(CH3)═O]2, with R′ = -(CH2)xOCH3 (x = 2, 3). A systematic investigation of process parameters enabled us to obtain the selective formation of ZnO nanorods with tailored features, and provided an important insight into their growth mechanism. The morphology, structure, and composition of the synthesized ZnO nanosystems were thoroughly analyzed by field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), glancing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Photoluminescence (PL) measurements were carried out to gain information on the optical properties. Specifically, one-dimensional (1D) ZnO architectures could be grown on Si(100) substrates at temperatures as low as 200−300 °C and radio frequency (RF)-power values of 20 W, provided that a sufficiently high mass supply to the growth surface was maintained. To the best of our knowledge, the present work reports the mildest preparation conditions ever appeared in the literature for the PE-CVD of ZnO nanorods, a key result in view of potential large-scale technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276234500080 Publication Date 2010-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited (up) 75 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:82311 Serial 1472  
Permanent link to this record
 

 
Author Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Maccato, C.; Pozza, A.; Tondello, E.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization Type A1 Journal article
  Year 2010 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 12 Issue 7 Pages 2185-2197  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279627700040 Publication Date 2010-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited (up) 85 Open Access  
  Notes Approved Most recent IF: 3.474; 2010 IF: 4.006  
  Call Number UA @ lucian @ c:irua:83686 Serial 503  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.; pdf  doi
openurl 
  Title Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 3 Pages 372-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000332832500011 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (up) 95 Open Access  
  Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:113090 Serial 1051  
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Bekermann, D.; Devi, A.; Fischer, R.A.; Fornasiero, P.; Gombac, V.; Lebedev, O.I.; Maccato, C.; Montini, T.; Van Tendeloo, G.; Tondello, E. pdf  doi
openurl 
  Title F-doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 48 Pages 19362-19365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297606500027 Publication Date 2011-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited (up) 114 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:93628 Serial 1164  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: