toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions Type A1 Journal article
  Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2010 Issue 24 Pages 3701-3714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metalorganic frameworks (MOFs) as well as porous coordination polymers (PCPs) are porous, organicinorganic hybrid solids with zeolite-like structures and properties. Due to their extraordinarily high surface area and well defined pore structure MOFs can be used for the stabilization of metal nanoparticles with adjustable size. The embedded metal nanoparticles are still accessible for other reagents due to the high porosity of the MOF systems. This fact makes metal@MOF systems especially interesting for heterogeneous catalysis, gas storage and chemical sensing. This review compiles the cases of metal nanoparticles supported by or embedded into MOFs reported so far and the main aspects and problems associated with these novel nanocomposite systems. The determination of the dispersion and the location of the particles at the MOF support, the control of the loading degree and its effect on the catalytic activity of the system are discussed as well as the partial degradation of the MOF structure upon particle formation. Examples of the introduction of stabilizing groups into the MOF network that direct the loading and can influence the size and shape of the embedded particles are still rare and point into the possible direction of future investigations. Finally, the formation of bimetallic nanoparticles, which are stabilized and supported by a MOF network, will also be reviewed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000281684300001 Publication Date 2010-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited (down) 366 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.444; 2010 IF: 2.910  
  Call Number UA @ lucian @ c:irua:85495 Serial 2014  
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 23 Pages 6393-6401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000284975100025 Publication Date 2010-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (down) 194 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95530 Serial 208  
Permanent link to this record
 

 
Author Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 4 Pages 1226-1233  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000286110400042 Publication Date 2010-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (down) 158 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88642 Serial 3145  
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H. pdf  doi
openurl 
  Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 4 Pages 523-527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000299156400011 Publication Date 2011-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (down) 150 Open Access  
  Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:94110 Serial 717  
Permanent link to this record
 

 
Author Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution mapping of surface reduction in ceria nanoparticles Type A1 Journal article
  Year 2011 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 3 Issue 8 Pages 3385-3390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine structure of the Ce M4,5 edge as a fingerprint. The valency of the surface cerium ions is found to change from 4+ to 3+ owing to oxygen deficiency (vacancies) close to the surface. The thickness of this Ce3+ shell is measured using atomic-resolution Scanning Transmission Electron Microscopy (STEM)-EELS mapping over a {111} surface (the predominant facet for this ceria morphology), {111} type surface island steps and {100} terminating planes. For the {111} facets and for {111} surface islands, the reduction shell is found to extend over a single fully reduced surface plane and 12 underlying mixed valency planes. For the {100} facets the reduction shell extends over a larger area of 56 oxygen vacancy-rich planes. This finding provides a plausible explanation for the higher catalytic activity of the {100} surface facets in ceria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000293521700057 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (down) 127 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2011 IF: 5.914  
  Call Number UA @ lucian @ c:irua:90361UA @ admin @ c:irua:90361 Serial 1458  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 107 Issue 10 Pages 107602  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000294406600018 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited (down) 115 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:91265 c:irua:91265 c:irua:91265UA @ admin @ c:irua:91265 Serial 5  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 17 Pages 5622-5627  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000258941400021 Publication Date 2008-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (down) 112 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:76595 Serial 714  
Permanent link to this record
 

 
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 20 Pages 9827-9837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000290652200001 Publication Date 2011-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (down) 105 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:89556 Serial 3394  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
  Year 2009 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 19 Issue 13 Pages 2116-2124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000268297800012 Publication Date 2009-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (down) 100 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990  
  Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674  
Permanent link to this record
 

 
Author Ding, J.F.; Lebedev, O.I.; Turner, S.; Tian, Y.F.; Hu, W.J.; Seo, J.W.; Panagopoulos, C.; Prellier, W.; Van Tendeloo, G.; Wu, T. doi  openurl
  Title Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 5 Pages 054428-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetic properties of manganite bilayers composed of G-type antiferromagnetic (AFM) SrMnO3 and double-exchange ferromagnetic (FM) La0.7Sr0.3MnO3 are studied. A spin-glass state is observed as a result of competing magnetic orders and spin frustration at the La0.7Sr0.3MnO3/SrMnO3 interface. The dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line. Although an ideal G-type AFM SrMnO3 is featured with a compensated spin configuration, the bilayers exhibit exchange bias below the spin glass freezing temperature, which is much lower than the Néel temperature of SMO, indicating that the exchange bias is strongly correlated with the spin glass state. The results indicate that the spin frustration that originates from the competition between the AFM super-exchange and the FM double-exchange interactions can induce a strong magnetic anisotropy at the La0.7Sr0.3MnO3/SrMnO3 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315271200002 Publication Date 2013-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 98 Open Access  
  Notes FWO; COUNTATOMS; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107349 Serial 1696  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.; pdf  doi
openurl 
  Title Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 3 Pages 372-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000332832500011 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (down) 95 Open Access  
  Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:113090 Serial 1051  
Permanent link to this record
 

 
Author Callini, E.; Aguey-Zinsou, K.F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.L.; Cuevas, F.; Dam, B.; de Jongh, P.; Dornheim, M.; Filinchuk, Y.; Grbović Novaković, J.; Hirscher, M.; Jensen, T.R.; Jensen, P.B.; Novaković, N.; Lai, Q.; Leardini, F.; Gattia, D.M.; Pasquini, L.; Steriotis, T.; Turner, S.; Vegge, T.; Züttel, A.; Montone, A. doi  openurl
  Title Nanostructured materials for solid-state hydrogen storage : a review of the achievement of COST Action MP1103 Type A1 Journal article
  Year 2016 Publication International journal of hydrogen energy T2 – E-MRS Fall Meeting / Symposium C on Hydrogen Storage in Solids -, Materials, Systems and Aplication Trends, SEP 15-18, 2015, Warsaw, POLAND Abbreviated Journal Int J Hydrogen Energ  
  Volume 41 Issue 41 Pages 14404-14428  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor  
  Language Wos 000381950800051 Publication Date 2016-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited (down) 89 Open Access Not_Open_Access  
  Notes All the authors greatly thank the COST Action MP1103 for financial support. Approved Most recent IF: 3.582  
  Call Number UA @ lucian @ c:irua:135723 Serial 4307  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Hyunchul, O.; Hirscher, M.; Esken, D.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metal@COFs : covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material Type A1 Journal article
  Year 2012 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 18 Issue 35 Pages 10848-10856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(eta 3-C3H5)(eta 5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4 +/- 0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metalorganic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307782800013 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited (down) 88 Open Access  
  Notes Fwo Approved Most recent IF: 5.317; 2012 IF: 5.831  
  Call Number UA @ lucian @ c:irua:100469 Serial 2007  
Permanent link to this record
 

 
Author Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Maccato, C.; Pozza, A.; Tondello, E.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization Type A1 Journal article
  Year 2010 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 12 Issue 7 Pages 2185-2197  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279627700040 Publication Date 2010-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited (down) 85 Open Access  
  Notes Approved Most recent IF: 3.474; 2010 IF: 4.006  
  Call Number UA @ lucian @ c:irua:83686 Serial 503  
Permanent link to this record
 

 
Author Goris, B.; Turner, S.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional valency mapping in ceria nanocrystals Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 10 Pages 10878-10884  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Using electron tomography combined with electron energy loss spectroscopy (EELS), we are able to map the valency of the Ce ions in CeO2-x nanocrystals in three dimensions. Our results show a clear facet-dependent reduction shell at the surface of ceria nanoparticles; {111} surface facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more likely to be reduced over a larger surface shell. Our generic tomographic technique allows a full 3D data cube to be reconstructed, containing an EELS spectrum in each voxel. This possibility enables a three-dimensional investigation of a plethora of material-specific physical properties such as valency, chemical composition, oxygen coordination, or bond lengths, triggering the synthesis of nanomaterials with improved properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343952600126 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (down) 85 Open Access OpenAccess  
  Notes 335078 Colouratom; 246791 Countatoms; Fwo; 312483 Esteem2; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:121219 Serial 3656  
Permanent link to this record
 

 
Author Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond Type A1 Journal article
  Year 2010 Publication Small Abbreviated Journal Small  
  Volume 6 Issue 5 Pages 687-694  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries. A photoluminescence (PL) spectrum with well-pronounced zero-phonon lines related to the N-V centers is demonstrated for the first time for electron-irradiated and annealed DND particles at continuous laser excitation. Combined Raman and PL analysis of DND crystallites dispersed on a Si substrate leads to the conclusion that the observed N-V luminescence originates from primary particles with sizes exceeding 30 nm. These findings demonstrate that by manipulation of the size/nitrogen content in DND there are prospects for mass production of nanodiamond photoemitters based on bright and stable luminescence from nitrogen-related defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000275972400013 Publication Date 2010-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810;1613-6829; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited (down) 84 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 8.643; 2010 IF: 7.336  
  Call Number UA @ lucian @ c:irua:82364 Serial 2341  
Permanent link to this record
 

 
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 26 Pages 10911-10919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305863900037 Publication Date 2012-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited (down) 83 Open Access  
  Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:100330 Serial 514  
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 41 Pages 16370-16373  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000295997500014 Publication Date 2011-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited (down) 82 Open Access  
  Notes Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:93582 Serial 1315  
Permanent link to this record
 

 
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.; pdf  doi
openurl 
  Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
  Year 2014 Publication Small Abbreviated Journal Small  
  Volume 10 Issue 6 Pages 1106-1115  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333538000012 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited (down) 79 Open Access Not_Open_Access  
  Notes 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368  
  Call Number UA @ lucian @ c:irua:115566 Serial 1234  
Permanent link to this record
 

 
Author Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van Tendeloo, G.; Wang, J.; Wu, T.; url  doi
openurl 
  Title Nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 3 Issue 4 Pages 041027-14  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the unconventional bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000328862400001 Publication Date 2013-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited (down) 77 Open Access  
  Notes FWO;FP7;IFOX; Countatoms; Hercules Approved Most recent IF: 12.789; 2013 IF: 8.463  
  Call Number UA @ lucian @ c:irua:112524 Serial 2365  
Permanent link to this record
 

 
Author Khaletskaya, K.; Turner, S.; Tu, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 30 Pages 4804-4811  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of localized metal-organic framework (MOF) thin film formation is a challenge. Zeolitic imidazolate frameworks (ZIFs) are an important sub-class of MOFs based on transition metals and imidazolate linkers. Continuous coatings of intergrown ZIF crystals require high rates of heterogeneous nucleation. In this work, substrates coated with zinc oxide layers are used, obtained by atomic layer deposition (ALD) or by magnetron sputtering, to provide the Zn2+ ions required for nucleation and localized growth of ZIF-8 films ([Zn(mim)(2)]; Hmim = 2-methylimidazolate). The obtained ZIF-8 films reveal the expected microporosity, as deduced from methanol adsorption studies using an environmentally controlled quartz crystal microbalance (QCM) and comparison with bulk ZIF-8 reference data. The concept is transferable to other MOFs, and is applied to the formation of [Al(OH)(1,4-ndc)](n) (ndc = naphtalenedicarboxylate) thin films derived from Al2O3 nanolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340549900010 Publication Date 2014-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (down) 77 Open Access  
  Notes 312483 Esteem2; Fwo; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:119215 Serial 2975  
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 16 Pages 5907-5915  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000289260000012 Publication Date 2011-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (down) 76 Open Access  
  Notes Esteem 026019 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88641 Serial 3936  
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
  Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 12 Pages 1876-1887  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000289644300004 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited (down) 75 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049  
  Call Number UA @ lucian @ c:irua:88644 Serial 205  
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
  Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 22 Issue 23 Pages 11739-11747  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000304351400046 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (down) 74 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:98382 Serial 3840  
Permanent link to this record
 

 
Author Schutyser, W.; Van den Bosch, S.; Dijkmans, J.; Turner, S.; Meledina, M.; Van Tendeloo, G.; Debecker, D.P.; Sels, B.F. pdf  doi
openurl 
  Title Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks Type A1 Journal article
  Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 8 Issue 8 Pages 1805-1818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (> 250 degrees C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (approximate to 80%) and tin-containing beta zeolite to form 4-alkyl-e-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000355220300020 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited (down) 71 Open Access  
  Notes Fwo Approved Most recent IF: 7.226; 2015 IF: 7.657  
  Call Number c:irua:126406 Serial 2967  
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A. pdf  doi
openurl 
  Title Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 6 Pages 5757-5764  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338089200039 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (down) 71 Open Access  
  Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:117599 Serial 3683  
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Bekermann, D.; Gasparotto, A.; Maccato, C.; Comini, E.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Devi, A.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Plasma-assisted synthesis of Ag/ZnO nanocomposites : first example of photo-induced H2 production and sensing Type A1 Journal article
  Year 2011 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 36 Issue 24 Pages 15527-15537  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ag/ZnO nanocomposites were developed by a plasma-assisted approach. The adopted strategy exploits the advantages of Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) for the growth of columnar ZnO arrays on Si(100) and Al2O3 substrates, in synergy with the infiltration power of the Radio Frequency (RF)-sputtering technique for the subsequent dispersion of different amounts of Ag nanoparticles (NPs). The resulting composites, both as-prepared and after annealing in air, were thoroughly characterized with particular attention on their morphological organization, structure and composition. For the first time, the above systems have been used as catalysts in the production of hydrogen by photo-reforming of alcoholic solutions, yielding a stable H2 evolution even by the sole use of simulated solar radiation. In addition, Ag/ZnO nanocomposites presented an excellent response in the gas-phase detection of H2, opening attractive perspectives for advanced technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000297089700006 Publication Date 2011-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited (down) 62 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 3.582; 2011 IF: 4.054  
  Call Number UA @ lucian @ c:irua:91901 Serial 2627  
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 4 Pages 041907  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000306944700030 Publication Date 2012-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (down) 59 Open Access  
  Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726  
Permanent link to this record
 

 
Author Wilmotte, A.; Turner, S.; van de Peer, Y.; Pace, N.R. doi  openurl
  Title Taxonomical study of marine oscillatorian strains (Cyanobacteria) with narrow trichomes: 2: nucleotide sequence analysis of the 16S ribosomal RNA Type A1 Journal article
  Year 1992 Publication Journal Of Phycology Abbreviated Journal J Phycol  
  Volume 28 Issue Pages 828-838  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Baltimore, Md Editor  
  Language Wos A1992KH06800016 Publication Date 2004-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3646;1529-8817; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.844 Times cited (down) 58 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:11368 Serial 3470  
Permanent link to this record
 

 
Author Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G.A. pdf  doi
openurl 
  Title Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 8 Pages 3890-3900  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A platform for producing stabilized Pt atoms and clusters through the combination of an N-doped graphene support and atomic layer deposition (ALD) for the Pt catalysts was investigated using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). It was determined, using imaging and spectroscopy techniques, that a wide range of N-dopant types entered the graphene lattice through covalent bonds without largely damaging its structure. Additionally and most notably, Pt atoms and atomic clusters formed in the absence of nanoparticles. This work provides a new strategy for experimentally producing stable atomic and subnanometer cluster catalysts, which can greatly assist the proton exchange membrane fuel cell (PEMFC) development by producing the ultimate surface area to volume ratio catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000332188100004 Publication Date 2014-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (down) 57 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:115571 Serial 352  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: