|   | 
Details
   web
Record
Author Dixit, H.; Lamoen, D.; Partoens, B.
Title Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 3 Pages 035501-35505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000313100500010 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:105296 Serial 2801
Permanent link to this record