|   | 
Details
   web
Record
Author Van Schoubroeck, S.; Thomassen, G.; Van Passel, S.; Malina, R.; Springael, J.; Lizin, S.; Venditti, R.A.; Yao, Y.; Van Dael, M.
Title An integrated techno-sustainability assessment (TSA) framework for emerging technologies Type A1 Journal article
Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 23 Issue 4 Pages 1700-1715
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract A better understanding of the drivers of the economic, environmental, and social sustainability of emerging (biobased) technologies and products in early development phases can help decision-makers to identify sustainability hurdles and opportunities. Furthermore, it guides additional research and development efforts and investment decisions, that will, ultimately, lead to more sustainable products and technologies entering a market. To this end, this study developed a novel techno-sustainability assessment (TSA) framework with a demonstration on a biobased chemical application. The integrated TSA compares the potential sustainability performance of different (technology) scenarios and helps to make better-informed decisions by evaluating and trading-off sustainability impacts in one holistic framework. The TSA combines methods for comprehensive indicator selection and integration of technological and country-specific data with environmental, economic, and social data. Multi-criteria decision analysis (MCDA) is used to address data uncertainty and to enable scenario comparison if indicators are expressed in different units. A hierarchical, stochastic outranking approach is followed that compares different weighting schemes and preference structures to check for the robustness of the results. The integrated TSA framework is demonstrated on an application for which the sustainability of a production and harvesting plant of microalgae-based food colorants is assessed. For a set of scenarios that vary with regard to the algae feedstock, production technology, and location, the sustainability performance is quantified and compared, and the underlying reasons for this performance are explored.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629630600018 Publication Date 2021-02-10
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.125
Call Number UA @ admin @ c:irua:175716 Serial 6931
Permanent link to this record