toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Prituzhalov, V.A.; Ardashnikova, E.I.; Vinogradov, A.A.; Dolgikh, V.A.; Videau, J.-J.; Fargin, E.; Abakumov, A.M.; Tarakina, N.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title New anion-conducting solid solutions Bi1-xTex(O,F)2+\delta (x > 0.5) and glassceramic material on their base Type A1 Journal article
  Year 2011 Publication Journal of fluorine chemistry Abbreviated Journal J Fluorine Chem  
  Volume 132 Issue 12 Pages 1110-1116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The anion-excess fluorite-like solid solutions with general composition Bi1−xTex(O,F)2+δ (x > 0.5) have been synthesized by a solid state reaction of TeO2, BiF3 and Bi2O3 at 873 K with following quenching. The homogeneity areas and polymorphism of the I ↔ IV Bi1−xTex(O,F)2+δ phases were investigated. The crystal structure of the low temperature IV-Bi1−xTex(O,F)2+δ phase has been solved using electron diffraction and X-ray powder diffraction (a = 11.53051(9) Å, S.G. Ia-3, RI = 0.046, RP = 0.041). Glass formation area in the Bi2O3BiF3TeO2 (10% TiO2) system was investigated. IVBi1−xTex(O,F)2+δ phase starts to crystallize at short-time (0.53 h) annealing of oxyfluoride glasses at temperatures above Tg (600615 K). The ionic conductivity of the crystalline Bi1−xTex(O,F)2+δ phase and corresponding glass-ceramics was investigated. Activation energy of conductivity Ea = 0.41(2) eV for the IV-Bi1−xTex(O,F)2+δ crystalline samples and Ea = 0.73 eV for the glass-ceramic samples were obtained. Investigation of the oxyfluoride samples with a constant cation ratio demonstrates essential influence of excess fluorine anions on the ionic conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lausanne Editor  
  Language Wos 000296936300011 Publication Date 2011-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1139; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.101 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.101; 2011 IF: 2.033  
  Call Number UA @ lucian @ c:irua:93687 Serial 2305  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: