|   | 
Details
   web
Records
Author Smondyrev, M.A.; Peeters, F.M.; Vansant, P.; Devreese, J.T.
Title Exact equations for large bipolarons in the strong-coupling limit Type A1 Journal article
Year 1994 Publication (up) Journal of physics: A: mathematical and general Abbreviated Journal
Volume 27 Issue Pages 7925-7936
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1994PW35300035 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-4470 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 17 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9276 Serial 1106
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T.
Title The hot electron distribution of two-dimensional electrons in a polar semiconductor at zero temperature Type A3 Journal article
Year 1991 Publication (up) Journal of physics: C: condensed matter Abbreviated Journal
Volume 3 Issue Pages 1783-1791
Keywords A3 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1991FE35700009 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:948 Serial 1490
Permanent link to this record
 

 
Author Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milošević, M.V.; Van Waeyenberge, B.
Title Fast micromagnetic simulations on GPU-recent advances made with mumax3 Type A1 Journal article
Year 2018 Publication (up) Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 12 Pages 123002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the last twenty years, numerical modeling has become an indispensable part of magnetism research. It has become a standard tool for both the exploration of new systems and for the interpretation of experimental data. In the last five years, the capabilities of micromagnetic modeling have dramatically increased due to the deployment of graphical processing units (GPU), which have sped up calculations to a factor of 200. This has enabled many studies which were previously unfeasible. In this topical review, we give an overview of this modeling approach and show how it has contributed to the forefront of current magnetism research.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000425774100001 Publication Date 2018-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 65 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Titan Xp GPU used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:149852UA @ admin @ c:irua:149852 Serial 4934
Permanent link to this record
 

 
Author Leliaert, J.; Gypens, P.; Milošević, M.V.; Van Waeyenberge, B.; Mulkers, J.
Title Coupling of the skyrmion velocity to its breathing mode in periodically notched nanotracks Type A1 Journal article
Year 2019 Publication (up) Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 2 Pages 024003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A thorough understanding of the skyrmion motion through nanotracks is a prerequisite to realize the full potential of spintronic applications like the skyrmion racetrack memory. One of the challenges is to place the data, i.e. skyrmions, on discrete fixed positions, e.g. below a read or write head. In the domain-wall racetrack memory, one proposed solution to this problem was patterning the nanotrack with notches. Following this approach, this paper reports on the skyrmion mobility through a nanotrack with periodic notches (constrictions) made using variations in the chiral Dzyaloshinskii-Moriya interaction. We observe that such notches induce a coupling between the mobility and the skyrmion breathing mode, which manifests itself as velocity-dependent oscillations of the skyrmion diameter and plateaus in which the velocity is independent of the driving force. Despite the fact that domain walls are far more rigid objects than skyrmions, we were able to perform an analogous study and, surprisingly, found even larger plateaus of constant velocity. For both systems it is straightforward to tune the velocity at these plateaus by changing the design of the notched nanotrack geometry, e.g. by varying the distance between the notches. Therefore, the notch-induced coupling between the excited modes and the mobility could offer a strategy to stabilize the velocity against unwanted perturbations in racetrack-like applications. In the last part of the paper we focus on the low-current mobility regimes, whose very rich dynamics at nonzero temperatures are very similar to the operating principle of recently developed probabilistic logic devices. This proves that the mobility of nanomagnetic structures through a periodically modulated track is not only interesting from a fundamental point of view, but has a future in many spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449169100001 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes ; This work is supported by Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL acknowledges his postdoctoral fellowships by the Ghent University special research fund (BOF) and FWO-Vlaanderen. The authors gratefully acknowledge the support of NVIDIA Corporation through donation of Titan Xp and Titan V GPU cards used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:155359 Serial 5202
Permanent link to this record
 

 
Author Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M.
Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
Year 2023 Publication (up) Journal of physics: D: applied physics Abbreviated Journal
Volume 56 Issue 48 Pages 483001-483024
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001076327300001 Publication Date 2023-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:200353 Serial 9081
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B.
Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
Year 2024 Publication (up) Journal of physics: D: applied physics Abbreviated Journal
Volume 57 Issue 2 Pages 025301-25309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082883200001 Publication Date 2023-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved no
Call Number UA @ admin @ c:irua:200300 Serial 9099
Permanent link to this record
 

 
Author Janyavula, S.; Lawson, N.; Çakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O.
Title The wear of polished and glazed zirconia against enamel Type A1 Journal article
Year 2013 Publication (up) Journal Of Prosthetic Dentistry Abbreviated Journal J Prosthet Dent
Volume 109 Issue 1 Pages 22-29
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Statement of problem. The wear of tooth structure opposing anatomically contoured zirconia crowns requires further investigation. Purpose. The purpose of this in vitro study was to measure the roughness and wear of polished, glazed, and polished then reglazed zirconia against human enamel antagonists and compare the measurements to those of veneering porcelain and natural enamel. Material and methods. Zirconia specimens were divided into polished, glazed, and polished then reglazed groups (n=8). A veneering porcelain (Ceramco3) and enamel were used as controls. The surface roughness of all pretest specimens was measured. Wear testing was performed in the newly designed Alabama wear testing device. The mesiobuccal cusps of extracted molars were standardized and used as antagonists. Three-dimensional (3D) scans of the specimens and antagonists were obtained at baseline and after 200 000 and 400 000 cycles with a profilometer. The baseline scans were superimposed on the posttesting scans to determine volumetric wear. Data were analyzed with a 1-way ANOVA and Tukey Honestly Significant Difference (HSD) post hoc tests (alpha=.05) Results. Surface roughness ranked in order of least rough to roughest was: polished zirconia, glazed zirconia, polished then reglazed zirconia, veneering porcelain, and enamel. For ceramic, there was no measureable loss on polished zirconia, moderate loss on the surface of enamel, and significant loss on glazed and polished then reglazed zirconia. The highest ceramic wear was exhibited by the veneering ceramic. For enamel antagonists, polished zirconia caused the least wear, and enamel caused moderate wear. Glazed and polished then reglazed zirconia showed significant opposing enamel wear, and veneering porcelain demonstrated the most. Conclusions. Within the limitations of the study, polished zirconia is wear-friendly to the opposing tooth. Glazed zirconia causes more material and antagonist wear than polished zirconia. The surface roughness of the zirconia aided in predicting the wear of the opposing dentition. (J Prosthet Dent 2013;109:22-29)
Address
Corporate Author Thesis
Publisher Place of Publication St. Louis, Mo. Editor
Language Wos 000313934900004 Publication Date 2013-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3913 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.095 Times cited 89 Open Access
Notes ; ; Approved Most recent IF: 2.095; 2013 IF: 1.419
Call Number UA @ lucian @ c:irua:128327 Serial 4612
Permanent link to this record
 

 
Author Krstajic, P.M.; Ivanov, V.A.; Peeters, F.M.; Fleurov, V.; Kikoin, K.
Title Ferromagnetism in Mn-doped GaAs : the kinematic exchange Type A1 Journal article
Year 2003 Publication (up) Journal of superconductivity T2 – PASPS Conference 2002, JUL, 2002, WURZBURG, GERMANY Abbreviated Journal J Supercond
Volume 16 Issue 1 Pages 111-113
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We developed a microscopic model in order to describe the onset of ferromagnetism (FM) in GaAs:Mn. The proposed kinematic mechanism bears resemblances with the Zener exchange. The calculated Curie temperature for GaAs: Mn is in good agreement with available experimental data of the Curie temperature as a function of the manganese concentration.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000182060400027 Publication Date 2003-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0896-1107; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103314 Serial 1183
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M.
Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
Year 2011 Publication (up) Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 24 Issue 1/2 Pages 905-910
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000289855700150 Publication Date 2010-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 2 Open Access
Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650
Call Number UA @ lucian @ c:irua:89930 Serial 130
Permanent link to this record
 

 
Author Croitoru, M.D.; Buzdin, A.I.
Title FFLO-wave-vector lock-in effect in quasi-1D superconductors Type A1 Journal article
Year 2015 Publication (up) Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 28 Issue 28 Pages 1305-1308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the phase transition into the Fulde-Ferrell-Larkin-Ovchinnikov state in high magnetic field in quasi-one dimensional superconductors within the quasi-classical formalism, taking into account the interchain Josephson coupling and the paramagnetic spin splitting. We show that anomalies in the field-direction dependence of the upper critical field when the magnetic field length equals to the FFLO period, previously described in [29], are characterized by the lock-in effect of the FFLO modulation wave vector, which is governed by the magnetic length.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000352085700019 Publication Date 2014-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 4 Open Access
Notes ; We thank D. Jerome for useful discussions. We acknowledge the support by the French ANR program “ElectroVortex” and European NanoSC COST Action MP1201. M.D.C. acknowledges the support by the BELSPO Return to Belgium Grant. ; Approved Most recent IF: 1.18; 2015 IF: 0.909
Call Number c:irua:125540 Serial 1187
Permanent link to this record
 

 
Author Guidini, A.; Flammia, L.; Milošević, M.V.; Perali, A.
Title BCS-BEC crossover in quantum confined superconductors Type A1 Journal article
Year 2016 Publication (up) Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 711-715
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ultranarrow superconductors are in the strong quantum confinement regime with formation of multiple coherent condensates associated with the many subbands of the electronic structure. Here, we analyze the multiband BCS-BEC crossover induced by the chemical potential tuned close to a subband bottom, in correspondence of a superconducting shape resonance. The evolution of the condensate fraction and of the pair correlation length in the ground state as functions of the chemical potential demonstrates the tunability of the BCS-BEC crossover for the condensate component of the selected subband. The extension of the crossover regime increases when the pairing strength and/or the characteristic energy of the interaction get larger. Our results indicate the coexistence of large and small Cooper pairs in the crossover regime, leading to the optimal parameter configuration for high transition temperature superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500034 Publication Date 2015-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 12 Open Access
Notes ; We acknowledge A. Bianconi and A.A. Shanenko for useful discussions. A.P. acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. M.V.M. acknowledges support from the Research Foundation – Flanders (FWO) and the Special Research Funds of the University of Antwerp (BOF-UA). A.P. and M.V.M. acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132287 Serial 4143
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Influence of disorder on superconducting correlations in nanoparticles Type A1 Journal article
Year 2016 Publication (up) Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 605-609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and level broadening caused by disorder affects superconducting correlations in ultra-small metallic grains. We use the electron-phonon interaction-induced electron mass renormalization and the reduced static-path approximation of the BCS formalism to calculate the critical temperature as a function of the grain size. We show how the strong electron-impurity scattering additionally smears the peak structure in the electronic density of states of a metallic grain and imposes additional limits on the critical temperature under strong quantum confinement.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500013 Publication Date 2016-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 7 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO-Vl. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132286 Serial 4195
Permanent link to this record
 

 
Author Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Milošević, M.V.; Perali, A.
Title Shape-Resonant Superconductivity in Nanofilms: from Weak to Strong Coupling Type A1 Journal article
Year 2016 Publication (up) Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 3081-3086
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here, we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000390030600016 Publication Date 2016-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 11 Open Access
Notes ; We acknowledge D. Valentinis, D. Van der Marel, and C. Berthod for useful discussions. A. Ricci is also acknowledged for his comments on the experimental detection of the predictions of this paper. A. Bianconi acknowledges financial support from Superstripes non-profit organization. M. Cariglia acknowledges CNPq support from project (205029 / 2014-0) and FAPEMIG support from project APQ-02164-14. M.M. Doria acknowledges CNPq support from funding (23079.014992 / 2015-39). M.V. Milosevic acknowledges support from Research Foundation – Flanders (FWO). A. Perali acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. All authors acknowledge the collaboration within the MultiSuper Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:140347 Serial 4461
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Sorée, B.
Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
Year 2018 Publication (up) Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 31 Issue 5 Pages 1351-1357
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000429354100010 Publication Date 2017-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.18 Times cited Open Access
Notes ; ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Mints, R.G.; Peeters, F.M.
Title Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication (up) Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Abbreviated Journal J Surf Investig-X-Ra
Volume 2 Issue 4 Pages 611-615
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract The properties of a clean superconductor with nanoscale dimensions are governed by quantum confinement of the electrons. This results in a spatially inhomogeneous superconducting condensate and in the formation of new Andreev-type quasiparticle states. These states are mainly located beyond regions where the superconducting condensate is enhanced. A numerical self-consistent solution of the Bogoliubov-de Gennes equations for a cylindrical metallic nanowire shows that these new Andreev-type states decrease the ratio of the energy gap to the critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000262864600021 Publication Date 2008-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1027-4510;1819-7094; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75991 Serial 113
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N.
Title Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
Year 2017 Publication (up) Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 100 Issue 100 Pages 1508-1516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000399610800034 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.841
Call Number UA @ lucian @ c:irua:143682 Serial 4597
Permanent link to this record
 

 
Author Tyutyunnik, A.P.; Slobodin, B.V.; Samigullina, R.F.; Verberck, B.; Tarakina, N.V.
Title K2CaV2O7 : a pyrovanadate with a new layered type of structure in the A2BV2O7 family Type A1 Journal article
Year 2013 Publication (up) Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 42 Issue 4 Pages 1057-1064
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The crystal structure of K2CaV2O7 prepared by a conventional solid-state reaction has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. This compound crystallises in the triclinic space group (P (1) over bar, Z = 2) with unit cell constants a = 7.1577(1) angstrom, b = 10.5104(2) angstrom, c = 5.8187(1) angstrom, alpha = 106.3368(9)degrees, beta = 106.235(1)degrees, gamma = 71.1375(9)degrees. The structure can be described as infinite undulating CaV2O72- layers parallel to the ac plane, which consist of pairs of edge-sharing CaO6 octahedra connected to each other through V2O7 pyrogroups. The potassium atoms are positioned in two sites between the layers, with a distorted IX-fold coordination of oxygen atoms. The chemical composition obtained from the structural solution was confirmed by energy-dispersive X-ray analysis. The stability of compounds in the family of alkali metal calcium pyrovanadates is discussed based on an analysis of the correlation between anion and cation sizes and theoretical first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000312659200030 Publication Date 2012-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 3 Open Access
Notes ; N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. B. V. was financially supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 4.029; 2013 IF: 4.097
Call Number UA @ lucian @ c:irua:105945 Serial 3536
Permanent link to this record
 

 
Author Yorulmaz, U.; Demiroglu, I.; Cakir, D.; Gulseren, O.; Sevik, C.
Title A systematicalab-initioreview of promising 2D MXene monolayers towards Li-ion battery applications Type A1 Journal article
Year 2020 Publication (up) JPhys Energy Abbreviated Journal
Volume 2 Issue 3 Pages 032006
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional materials have been attracting increasing interests because of their outstanding properties for Lithium-ion battery applications. In particular, a material family called MXenes (Mn+1Cn, where n = 1, 2, 3) have been recently attracted immense interest in this respect due to their incomparable fast-charging properties and high capacity promises. In this article, we review the state-of-the-art computational progress on Li-ion battery applications of MXene materials in accordance with our systematical DFT calculations. Structural, mechanical, dynamical, and electrical properties of 20 distinct MXene (M: Sc, Ti, V, Cr, Nb, Mo, Hf, Ta, W, and Zr) have been discussed. The battery performances of these MXene monolayers are further investigated by Li-ion binding energies, open circuit voltage values, and Li migration energy barriers. The experimental and theoretical progress up to date demonstrates particularly the potential of non-terminated or pristine MXene materials in Li ion-storage applications. Stability analyses show most of the pristine MXenes should be achievable, however susceptible to the development progress on the experimental growth procedures. Among pristine MXenes, Ti2C, V2C, Sc2C, and Zr2C compounds excel with their high charge/discharge rate prospect due to their extremely low Li diffusion energy barriers. Considering also their higher predicted gravimetric capacities, Sc, Ti, V, and Zr containing MXenes are more promising for their utilization in energy storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000569868600001 Publication Date 2020-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2515-7655 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.9 Times cited Open Access
Notes Approved Most recent IF: 6.9; 2020 IF: NA
Call Number UA @ admin @ c:irua:193748 Serial 7399
Permanent link to this record
 

 
Author Galvan Moya, J.E.; Nelissen, K.; Peeters, F.M.
Title Structural ordering of self-assembled clusters with competing interactions : transition from faceted to spherical clusters Type A1 Journal article
Year 2015 Publication (up) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 31 Issue 31 Pages 917-924
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000348689700005 Publication Date 2014-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.833; 2015 IF: 4.457
Call Number c:irua:125292 Serial 3243
Permanent link to this record
 

 
Author Sreckovic, M.Z.; Tomic, E.; Ostojic, S.M.; Ilic, J.T.; Bundaleski, N.; Sekulic, R.S.; Mlinar, V.
Title The application of laser beam diffraction and scattering methods in the measurement of shape and determination of material parameters Type A1 Journal article
Year 2007 Publication (up) Lasers in Engineering (Old City Publishing) Abbreviated Journal Laser Eng
Volume 17 Issue 3-4 Pages 179-196
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Lasers can be used for many applications including determination of size, in addition to the theory of diffraction and material dispersion phenomena. In this paper we calculated the corrections in angular intensity for the Gaussian and uniform particle distributions, the scattering intensity on cylindrical objects. We also evaluated the necessary mathematical summations. In addition, we analyse and Simulate the special positions of detectors using laser Doppler anemometric (LDA) methods, which can be used to determine the particle diameter. The dispersion measurements for actual fibres are given at the end. The geometric and material parameters of these fibres were taken before the evaluation of the angular scattering intensity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0898-1507 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.214 Times cited Open Access
Notes Approved Most recent IF: 0.214; 2007 IF: 0.188
Call Number UA @ lucian @ c:irua:104050 Serial 3571
Permanent link to this record
 

 
Author Kálna, K.; Mo×ko, M.; Peeters, F.M.
Title Electron-electron scattering induced capture in GaAs quantum wells Type A3 Journal article
Year 1995 Publication (up) Lithuanian journal of physics Abbreviated Journal
Volume 35 Issue Pages 435-439
Keywords A3 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12201 Serial 927
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
Year 2021 Publication (up) Materials Abbreviated Journal Materials
Volume 14 Issue 15 Pages 4167
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000682047700001 Publication Date 2021-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.654
Call Number UA @ admin @ c:irua:180540 Serial 6966
Permanent link to this record
 

 
Author Gul, A.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Tomak, A.; Zareie, H.M.; Sahin, H.
Title Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2 Type A1 Journal article
Year 2018 Publication (up) Materials Research Express Abbreviated Journal Mater Res Express
Volume 5 Issue 3 Pages 036415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDTstructure is changed upon conjugation ofHDTon MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000428781400003 Publication Date 2018-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 2 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 116C073. HS acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 1.068
Call Number UA @ lucian @ c:irua:154607UA @ admin @ c:irua:154607 Serial 5133
Permanent link to this record
 

 
Author Peeters, F.M.
Title Tuning of energy levels in a superlattice Type P1 Proceeding
Year 1994 Publication (up) Materials Research Society symposium proceedings Abbreviated Journal
Volume 325 Issue Pages 471-480
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Wuhan Editor
Language Wos A1994BA45Z00064 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:9381 Serial 3751
Permanent link to this record
 

 
Author Veljkovic, D.; Tadić, M.; Peeters, F.M.
Title Intersublevel absorption in stacked n-type doped self-assembled quantum dots Type A1 Journal article
Year 2005 Publication (up) Materials science forum Abbreviated Journal Mater Sci Forum
Volume 494 Issue Pages 37-42
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The intersublevel absorption in n-doped InAs/GaAs self-assembled quantum-dot molecules composed of three quantum dots is theoretically considered. The transition matrix elements and the transition energies are found to vary considerably with the spacer thickness. For s polarized light, decreasing the thickness of the spacer between the dots brings about crossings between the transition matrix elements, but the overall absorption is not affected by the variation of the spacer thickness. For p-polarized light and thick spacers, there are no available transitions in the single quantum dot, but a few of them emerge as a result of the electron state splitting in the stacks of coupled quantum dots, which leads to a considerable increase of the transition matrix elements, exceeding by an order of magnitude values of the matrix elements for s-polarized light.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94746 Serial 1715
Permanent link to this record
 

 
Author Partoens, B.; Matulis, A.; Peeters, F.M.
Title Magnetoplasma excitations in vertically coupled quantum dot systems Type A1 Journal article
Year 1999 Publication (up) Materials science forum Abbreviated Journal Mater Sci Forum
Volume 297/298 Issue Pages 225-228
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000080081600043 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24176 Serial 1920
Permanent link to this record
 

 
Author Hoat, D.M.; Nguyen, D.K.; Bafekry, A.; Van On, V.; Ul Haq, B.; Rivas-Silva, J.F.; Cocoletzi, G.H.
Title Strain-driven modulation of the electronic, optical and thermoelectric properties of beta-antimonene monolayer : a hybrid functional study Type A1 Journal article
Year 2021 Publication (up) Materials Science In Semiconductor Processing Abbreviated Journal Mat Sci Semicon Proc
Volume 131 Issue Pages 105878
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electronic, optical, and thermoelectric properties of the beta-antimonene (beta-Sb) monolayer under the external biaxial strain effects are fully investigated through the first-principles calculations. The studied two-dimensional (2D) system is dynamically and structurally stable as examined via phonon spectrum and cohesive energy. At equilibrium, the beta-Sb single layer exhibits an indirect band gap of 1.310 and 1.786 eV as predicted by the PBE and HSE06 functionals, respectively. Applying external strain may induce the indirect-direct gap transition and significant variation of the energy gap. The calculated optical spectra indicate the enhancement of the optical absorption in a wide energy range from infrared to ultraviolet as induced by the applied strain. In the visible and ultraviolet regime, the absorption coefficient can reach values as large as 82.700 (10(4)/cm) and 91.458 (10(4)/cm). Results suggest that the thermoelectric performance may be improved considerably by applying proper external strain with the figure of merit reaching a value of 0.665. Our work demonstrates that the external biaxial strains may be an effective method to make the beta-Sb monolayer prospective 2D material for optoelectronic and thermoelectric applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663422800002 Publication Date 2021-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.359 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.359
Call Number UA @ admin @ c:irua:179565 Serial 7021
Permanent link to this record
 

 
Author Yorulmaz, B.; Ozden, A.; Sar, H.; Ay, F.; Sevik, C.; Perkgoz, N.K.
Title CVD growth of monolayer WS2 through controlled seed formation and vapor density Type A1 Journal article
Year 2019 Publication (up) Materials science in semiconductor processing Abbreviated Journal
Volume 93 Issue Pages 158-163
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Large area, single layer WS2 has a high potential for use in optoelectrical devices with its high photo-luminescence intensity and low response time. In this work, we demonstrate a systematic study of controlled tungsten disulfide (WS2) monolayer growth using chemical vapor deposition (CVD) technique. With a detailed investigation of process parameters such as H-2 gas inclusion into the main carrier gas, growth temperature and duration, we have gained insight into two-dimensional (2D) WS2 synthesis through controlling the seed formations and the radical vapor density associated with WO3. We confirm that H-2 gas, when included to the carrier gas, is directly involved in WO3 reduction due to its reductive reagent nature, which provides a more effective sulfurization and monolayer formation process. Additionally, by changing the CVD growth configuration, hence, increasing the tungsten related vapor density and confining the reactant radicals, we succeed in realizing larger WS(2 )monolayers, which is still a technological challenge in order to utilize these structures for practical applications. Further optimization of the growth procedure is demonstrated by tuning the growth duration to prevent the excess seed formations and additional layers which will possibly limit the device performance of the monolayer flakes or films when applied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457727300018 Publication Date 2019-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193782 Serial 7748
Permanent link to this record
 

 
Author Dobrota, A.S.; Vlahovic, J.; V. Skorodumova, N.; Pasti, I.A.
Title First-principles analysis of aluminium interaction with nitrogen-doped graphene nanoribbons – from adatom bonding to various Type A1 Journal article
Year 2022 Publication (up) Materials Today Communications Abbreviated Journal
Volume 31 Issue Pages 103388-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Enhancing aluminium interaction with graphene-based materials is of crucial importance for the development of Al-storage materials and novel functional materials via atomically precise doping. Here, DFT calculations are employed to investigate Al interactions with non-doped and N-doped graphene nanoribbons (GNRs) and address the impact of the edge sites and N-containing defects on the material's reactivity towards Al. The presence of edges does not influence the energetics of Al adsorption significantly (compared to pristine graphene sheet). On the other hand, N-doping of graphene nanoribbons is found to affect the adsorption energy of Al to an extent that strongly depends on the type of N-containing defect. The introduction of edge-NO group and doping with in -plane pyridinic N result in Al adsorption nearly twice as strong as on pristine graphene. Moreover, double n-type doping via N and Al significantly alters the electronic structure of Al,N-containing GNRs. Our results suggest that selectively doped GNRs with pyridinic N can have enhanced Al-storage capacity and could be potentially used for selective Al electrosorption and removal. On the other hand, Al,N-containing GNRs with pyridinic N could also be used in resistive sensors for mechanical deformation. Namely, strain along the longitudinal axis of these dual doped GNRs does not affect the binding of Al but tunes the bandgap and causes more than 700-fold change in the conductivity. Thus, careful defect engineering and selective doping of GNRs with N (and Al) could lead to novel multifunctional materials with exceptional properties. [GRAPHICS]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820987400002 Publication Date 2022-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-4928 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189563 Serial 7163
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X.
Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
Year 2020 Publication (up) Materials today energy Abbreviated Journal
Volume 16 Issue Pages Unsp 100392-8
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539083500049 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.3 Times cited 13 Open Access
Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA
Call Number UA @ admin @ c:irua:169752 Serial 6655
Permanent link to this record