|   | 
Details
   web
Records
Author Vargas Paredes, A.A.
Title Emergent phenomena in superconductors in presence of intraband and cross-band pairing Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 142 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract In this thesis we investigate the emergence of new phenomena in multigap superconductors and multicomponent Ginzburg-Landau theories in the presence of intraband and cross-band pairing. The first part contains a review of emergent phenomena in superconductors with only intraband pairing, in particular the mechanism behind gap resonances which are accompanied by Higgs and Leggett modes. Then we study the gap resonances induced by two-dimensional quantum confinement and describe its spatial profile using the Bogoliubov-de Gennes equations. In the second part we describe the conditions where the cross-band pair formation is feasible. Using the formalism of Green functions we obtain the equations governing the interplay between intraband and cross-band pairing. Also, we derived the Ginzburg-Landau equations considering both intraband and cross-band pairing. Finally, we describe the crossover between the intraband-dominated and crossband-dominated regimes. These two are delimited by a tendency towards a gapless state. When a magnetic field is applied close to the gapless state, we found new arrangements of vortices like square lattices, stripes, labyrinths or of vortex clusters. The experimental signatures and consequences of crosspairing are discussed for MgB2 and Ba0.6K0.4Fe2As2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165865 Serial 7899
Permanent link to this record
 

 
Author Stosic, D.
Title High-performance Ginzburg-Landau simulations of superconductivity Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages 166 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract Superconductivity is one of the most important discoveries of the last century. With many applications in physics, engineering, and technology, superconductors are crucial to our way of living. Several material and engineering issues however prevent their widespread usage in everyday life. Comprehensive studies are being directed at these materials and their properties to come up with new technologies that will address these challenges and enhance their superconductive capabilities. In this context, numerical modeling plays an important role in the search of new solutions to existing material and engineering issues. The time-dependent Ginzburg-Landau (TDGL) theory is a powerful predictive tool for modeling the macroscopic behavior of superconductors. However most of the numerical algorithms developed so far are incapable of describing many basic properties of real superconducting devices, and are too slow on current hardware for large-scale numerical simulations necessary for their accurate description. Therefore, the purpose of this thesis is to develop high-performing numerical solutions that can correctly describe material features to be used as modeling tools of laboratory experiments. Some important innovations introduced in this work include the numerical modeling of nonrectangular geometrical shapes with complex electrical and insulating components, the inclusion of dynamic heating of the material, and the description of different types of material inhomogeneities. These encompass the principal features necessary for a complete description of the superconductive physics in real material samples. In this thesis a numerical solution is developed for modeling superconducting thin films and used to study the superconductive properties of three experimental configurations: the dynamics of vortex matter in a Corbino disk, the motion of ultrafast vortices in an hourglass-shaped microbridge, and the photon detection process in a meander-patterned nanowire. Moreover, a numerical solution is developed for modeling three-dimensional superconductors which are studied here for the first time in the type-I superconducting regime. These numerical algorithms are optimized to exploit the computational horsepower of graphics processing units (GPUs) and multicore central-processing unit (CPU) clusters such that they can achieve high-performance and be used to model large-scale problems previously impossible on conventional machines. Several computational tools are also designed to assist with the modeling of superconducting devices. These include a numerical library of the TDGL equations, a novel mechanism for the generation of complex geometries, a closed-form solver to conduct numerical simulations, and a graphics user interface (GUI) to visualize the dynamic behavior of superconductors. The contributions in this thesis ultimately push the boundaries on what is possible in state-of-the-art numerical modeling of superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:181141 Serial 8034
Permanent link to this record
 

 
Author Stosic, D.
Title Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages 153 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract Moore’s Law has driven the electronics industry for the past half century. However, the doubling of transistors about every two years is beginning to break down, owing to fundamental limits that arise as they approach the atomic length. As a result, the search for new pathways for electronics has become crucial. Among potential candidates, the discovery of magnetic textures known as skyrmions has attracted considerable interest and attention in spintronic technology, which relies on both the electron charge and its spin. The unusual topological and particle-like behavior launched skyrmions into the spotlight of scientific research. Topological protected stability, nanoscale size, and low driving currents needed to move them make skyrmions promising candidates for future consumer nanoelectronics. Recent advances in the field have provided all of the basic functions needed for carrying and processing information. In this thesis, we procure to advance the current understanding of skyrmion physics, and explore their potential to replace conventional electronics technology. First, the fundamental properties and lifetimes of racetrack skyrmions at room temperature are investigated. We discover that skyrmions can easily collapse at the boundary in laterally finite systems, and propose ways to improve their stability for constrained geometries. Then, pinning of single skyrmions on atomic defects of distinct origins are studied. We reveal that the preferred pinning positions depend on the skyrmion size and type of defect being considered, and discuss applications where control of skyrmions by defects is of particular interest. Next, we explore other magnetic configurations that can compete with skyrmions when considering new materials, and describe a previously unseen mechanism for collapse of skyrmions into cycloidal spin backgrounds. Finally, switching and interactions between skyrmions with distinct topologies are reported. We find that skyrmions transition to higher or lower topologies by absorbing a unit spin texture. The interactions between skyrmions of different topological charges can be attractive or repulsive, leading to the formation of arranged clusters. We conclude with a numerical library for simulating magnetic skyrmions in various scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:181142 Serial 8322
Permanent link to this record
 

 
Author Xiao, Y.
Title Theoretical study of the optoelectronic properties of new type 2DEG materials : multilayer graphene and monolayer MoS2 Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 144 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144948 Serial 8661
Permanent link to this record
 

 
Author Taghizadeh Sisakht, E.
Title Tight-binding investigation of the electronic properties of phosphorene and phosphorene nanoribbons Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 150 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract abstract not available
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:166195 Serial 8670
Permanent link to this record
 

 
Author Nakhaee, M.
Title Tight-binding model for two-dimensional materials Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 139 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract abstract not available
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:166134 Serial 8671
Permanent link to this record
 

 
Author Vizarim, N.P.
Title Dynamic behavior of Skyrmions under the influence of periodic pinning in chiral magnetic infinite thin films Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 212 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract The miniaturization of transistors for application in new processors and logic devices poses a significant challenge in the field of materials. Spintronics, which relies on controlled movement of magnetic nanostructures, offers a promising solution. Among the candidates, magnetic skyrmions are considered one of the most promising. These chiral spin structures, characterized by topological protection and enhanced stability compared to vortices or magnetic bubbles, have been extensively studied. To advance in the control of skyrmion motion, essential for practical applications, we investigated their dynamic behavior in a two-dimensional chiral magnet at zero temperature. Our study focused on the influence of periodic arrays of pinning centers. The simulations considered skyrmions as point-like particles considering the following interactions: skyrmion-skyrmion interactions, interactions with pinning center arrays, a current of polarized spins, and the Magnus force. We conducted calculations for scenarios involving a single skyrmion as well as different skyrmion density values in the material. The aim was to explore possibilities for controlled skyrmion motion, investigate different dynamic regimes, and examine collective effects. The results demonstrate that by adjusting the size, strength, and density of the pinning centers, we can effectively control the motion of individual skyrmions and manage the flow of multiple skyrmions. Furthermore, we discovered that periodic arrays of pinning centers can facilitate topological selection when different species of skyrmions with distinct Magnus components are present. Employing alternating currents, we observed the significant role of the ratchet effect in the skyrmion dynamics. By fine-tuning the amplitudes of the alternating currents, we achieved direct and controlled motion of skyrmions in specific directions. These findings hold potential for advancing our understanding of skyrmion dynamics and can inspire future technological applications involving these quasi-particles. Overall, we anticipate that our results will be valuable to the scientific community, contributing to a deeper comprehension of skyrmion dynamics and paving the way for future technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198101 Serial 8852
Permanent link to this record
 

 
Author Hassani, H.
Title First-principles study of polarons in WO₃ Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 181 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract Polarons are quasiparticles emerging in materials from the interaction of extra charge carriers with the surrounding atomic lattice. They appear in a wide va- riety of compounds and can have a profound impact on their properties, making the concept of a polaron a central and ubiquitous topic in material science. Al- though the concept is known for about 75 years, the origin of polarons is not yet fully elucidated. This thesis focuses on WO 3 as a well-known prototypical system for studying polarons, which inherent polaronic nature is linked to its remark- able electrical and chromic properties. The primary objective of this research is to provide a comprehensive atomistic description and understanding of polaron formation in WO 3 using first-principles density functional theory (DFT) calcula- tions. Additionally, the investigation explores the interactions between polarons and the possibility of bipolaron formation. Following a systematic strategy, we first extensively analyze the dielectric and lattice dynamical properties of WO 3 in both the room-temperature P 2 1 /n and ground-state P 2 1 /c phases. Our specific focus is on characterizing the zone-center phonons, which serve as the founda- tion for identifying the phonon modes involved in the polaron formation and charge localization process. Subsequently, we examine the impact of structural distortions on the electronic structure of WO 3 to elucidate the interplay between structural distortions and electronic properties, thereby laying the groundwork for understanding electron-phonon couplings. By incorporating these critical fac- tors, we address our primary research goals. The most common explanation for the polaron formation is associated with the electrostatic screening of the extra charge by the polarizable lattice. Here, we show that, even in ionic crystals, this is not necessarily the case. We demonstrate that polarons in this compound arise primarily from non-polar atomic distortions. We then unveil that this unexpected behavior originates from the undoing of distortive atomic motions, which lowers the bandgap. As such, we coin the name of anti-distortive polaron and validate its appearance through a simple quantum-dot model, in which charge localization is the result of balancing structural, electronic, and confinement energy costs. Then, we also study the polaron-polaron interaction and present the formation of the antiferromagnetic W 4+ bipolaronic state with relatively large formation energy. Our analysis of the W 4+ bipolaronic distortions on the global structure reveals the same behavior as in experiments where the highly distorted monoclinic phase transforms into a tetragonal phase as a function of doping. Additionally, leveraging our previous findings on asymmetric polaronic distortion and examin- ing different merging orientations, we stabilize the antiferromagnetic W 5+ -W 5+ bipolaronic state with an energy lower than the W 4+ state. This thesis clari- fies the formation of unusual medium-size 2D polarons and bipolarons in WO3,which might be relevant to the whole family of ABO 3 perovskites, to which WO 3 is closely related. The simplicity of the concept provides also obvious guidelines for tracking similar behavior in other families of compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198169 Serial 8868
Permanent link to this record
 

 
Author Hasnat Rubel, A.
Title Theoretical characterization and optimization of nano-engineered superconducting scanning probe tip Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages viii, 145 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using state-of-the-art simulation methods, we optimized the performance of nanoscale superconducting scanning probe tips for advanced spatial imaging of magnetic fields. The systematic studies of the tips’ static properties as a function of the tilted magnetic field, geometric parameters, and material parameters were carried out. The sensitivity of different superconducting quantum interference devices (SQUIDs) to the magnetic field emanating from the magnetic nanoparticle, where the location of a magnetic nanoparticle is considered below the primary loop's center, was examined as a function of the primary and secondary loop dimensions. The main objective of the research was to characterize and optimize the performance of a nano-sized SQUID-on-tip (SOT) device. Optimal SOT sensitivity was sought, for different loop sizes, arm linewidth, and lead dimensions. Moreover, we revealed that a constriction in the loop arms of the SOT can substantially improve the sensitivity of the device. Finally, the properties of the theta-SOT device were examined in the presence of in-plane and out-of-plane magnetic field components, enabling nanoscale imaging of 3D distributions of the magnetic field. Altogether, the obtained results deliver an engineering solution for the optimum performance of the SOT device in desired conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199494 Serial 8942
Permanent link to this record
 

 
Author Duran, T.A.; Yayak, Y.O.; Aydin, H.; Peeters, F.M.; Yagmurcukardes, M.
Title A perspective on the state-of-the-art functionalized 2D materials Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 134 Issue 12 Pages 120901-120929
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) ultra-thin materials are more crucial than their bulk counterparts for the covalent functionalization of their surface owing to atomic thinness, large surface-to-volume ratio, and high reactivity of surface atoms having unoccupied orbitals. Since the surface of a 2D material is composed of atoms having unoccupied orbitals, covalent functionalization enables one to improve or precisely modify the properties of the ultra-thin materials. Chemical functionalization of 2D materials not only modifies their intrinsic properties but also makes them adapted for nanotechnology applications. Such engineered materials have been used in many different applications with their improved properties. In the present Perspective, we begin with a brief history of functionalization followed by the introduction of functionalized 2D materials. Our Perspective is composed of the following sections: the applications areas of 2D graphene and graphene oxide crystals, transition metal dichalcogenides, and in-plane anisotropic black phosphorus, all of which have been widely used in different nanotechnology applications. Finally, our Perspectives on the future directions of applications of functionalized 2D materials are given. The present Perspective sheds light on the current progress in nanotechnological applications of engineered 2D materials through surface functionalization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001087770500008 Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:201281 Serial 9000
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Peremans, H.
Title Noise-resistant correlation-based alignment of head-related transfer functions for high-fidelity spherical harmonics representation Type P3 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT)
Abstract It is standard practice in virtual reality applications to synthesize binaural audio based on a discrete set of directionally-dependent head-related impulse responses (HRIRs). This set of HRIRs is often time-aligned in a pre-processing step, to allow for high-fidelity interpolation between HRIRs corresponding with neighbouring directions. The fidelity of this operation depends on the similarity of neighbouring aligned HRIRs. The pairwise quality of similarity makes it a difficult criterion to optimize globally and consequently one often resorts to alignment methods based on a specific feature that can be extracted for each HRIR separately, e.g., the first-onset of the peak or the group delay. However, such proxies for similarity are very sensitive to noise and therefore require a high signal-to-noise ratio, which makes them less suitable for processing HRIRs acquired outside an anechoic room. In this paper, we advance a novel alignment method, which maximizes the similarity – defined as the correlation between the full-length HRIRs – between neighbouring aligned HRIRs for all directions at once. We show that this correlation-based alignment procedure outperforms the first-onset alignment with regards to the fidelity of the spherical harmonics representation of both the spectral and interaural time difference (ITD) information, when tested on the KEMAR HRIR and six human HRIRs. Finally, we show that the correlation-based alignment is more robust to noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:199714 Serial 9062
Permanent link to this record
 

 
Author Jorissen, B.; Fernandes, L.
Title Simple systems, complicated physics : an interview with Nir Navon Type Editorial
Year 2023 Publication Belgian journal of physics Abbreviated Journal
Volume 1 Issue 6 Pages 4-5
Keywords Editorial; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract The EPS Antwerp Young Minds (AYM) invited Prof. Nir Navon (Yale University) to hold a colloquium for the physics department. For an audience of students and researchers, Prof. Navon presented recent advances in ultracold quantum matter and research from his own lab. His experimental work paves the way to make toy models used by theorists a reality. We sat down afterwards to discuss ultracold physics, box traps and setting up a lab from scratch.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:202673 Serial 9090
Permanent link to this record
 

 
Author Bogaerts, R.; de Keyser, A.; van Bockstal, L.; van der Burgt, M.; van Esch, A.; Provoost, R.; Silverans, R.; Herlach, F.; Swinnen, B.; van de Stadt, A.F.W.; Koenraad, P.M.; Wolter, J.H.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title 2D semiconductors at the Leuven pulsed field facility Type A1 Journal article
Year 1997 Publication Physicalia magazine Abbreviated Journal
Volume 19 Issue Pages 229-239
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19257 Serial 7
Permanent link to this record
 

 
Author Verhulst, S.L.; de Backer, J.; Van Gaal, L.; de Backer, W.; Desager, K.
Title Adenotonsillectomy as first-line treatment for sleep-disordered breathing in obese children Type L1 Letter to the editor
Year 2008 Publication American journal of respiratory and critical care medicine Abbreviated Journal Am J Resp Crit Care
Volume 177 Issue 12 Pages 1399
Keywords L1 Letter to the editor; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1073-449x; 1535-4970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.204 Times cited Open Access
Notes Approved Most recent IF: 13.204; 2008 IF: 9.792
Call Number UA @ lucian @ c:irua:68864 Serial 59
Permanent link to this record
 

 
Author Li, B.
Title Aharonov-Bohm effect in semiconductor quantum rings Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99488 Serial 85
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M.
Title Artificial atoms and molecules Type A1 Journal article
Year 2002 Publication Physicalia magazine Abbreviated Journal
Volume 24 Issue Pages 29
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:62455 Serial 152
Permanent link to this record
 

 
Author Peeters, F.M.; Golub, J.E.
Title Binding energy of the barbell exciton Type A1 Journal article
Year 1991 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 43 Issue Pages 5159-5162
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1991EY62300076 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 27 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:955 Serial 239
Permanent link to this record
 

 
Author Marmorkos, I.K.; Schweigert, V.A.; Peeters, F.M.; Lok, J.G.S.
Title Binding of remote and spatial separated D- centers in double barrier resonant tunneling semiconductor devices Type P3 Proceeding
Year 1996 Publication Abbreviated Journal
Volume Issue Pages 2769-2772
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #
Call Number UA @ lucian @ c:irua:15809 Serial 241
Permanent link to this record
 

 
Author Komendová, L.
Title Characteristic length scales and vortex interactions in two-component superconducting systems Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:112085 Serial 312
Permanent link to this record
 

 
Author Koenraad, P.M.; Shi, J.M.; van de Stadt, A.F.W.; Smets, A.; Perenboom, J.A.A.J.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H.
Title Charged-impurity correlations in a δ-doped quantum barrier Type P3 Proceeding
Year 1996 Publication Abbreviated Journal
Volume Issue Pages 2351-2354
Keywords P3 Proceeding; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15806 Serial 340
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H.
Title Charged-impurity correlations in Si ?-doped GaAs Type P3 Proceeding
Year 1996 Publication Abbreviated Journal
Volume Issue Pages 2351-2354
Keywords P3 Proceeding; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #
Call Number UA @ lucian @ c:irua:20368 Serial 341
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M.
Title Classical artificial two-dimensional atoms: the Thomson model Type A1 Journal article
Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 9 Issue Pages 5383-5393
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997XH14500007 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 52 Open Access
Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
Call Number UA @ lucian @ c:irua:19291 Serial 362
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Schweigert, I.V.
Title Classical atomic bilayers Type H1 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 523-527
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Plenum Press Place of Publication New York Editor
Language Wos 000083193600095 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24177 Serial 363
Permanent link to this record
 

 
Author Partoens, B.; Schweigert, V.A.; Peeters, F.M.
Title Classical double-layer atoms: artificial molecules Type A1 Journal article
Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 79 Issue Pages 3990-3993
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1997YF78600048 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 49 Open Access
Notes Approved Most recent IF: 8.462; 1997 IF: 6.140
Call Number UA @ lucian @ c:irua:19280 Serial 364
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Kong, M.
Title The classical electron gas in artificial structures Type P3 Proceeding
Year 2004 Publication Abbreviated Journal
Volume Issue Pages 235-250
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher IOS Press Place of Publication Amsterdam Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:62457 Serial 365
Permanent link to this record
 

 
Author Cândido, L.; Rino, J.-P.; Studart, N.; Peeters, F.M.
Title Classical model of clusters of screened charges in quantum dots Type A1 Journal article
Year 1997 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys
Volume 27 Issue A Pages 312-315
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication São Paulo Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733 ISBN Additional Links UA library record
Impact Factor 0.732 Times cited Open Access
Notes Approved Most recent IF: 0.732; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19297 Serial 367
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Peeters, F.M.
Title Classical nature of quantum dots in a magnetic field Type A1 Journal article
Year 2005 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A
Volume 107 Issue 1 Pages 188-192
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A quasiclassical theory of few-electron quantum dots in a strong magnetic field is developed. The ground state energy and the corresponding many-electron wave function are obtained and used to derive a universal relation of critical magnetic fields and calculate the currents and the density-current correlation function.
Address
Corporate Author Thesis
Publisher Place of Publication Warszawa Editor
Language Wos Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.469 Times cited Open Access
Notes Approved Most recent IF: 0.469; 2005 IF: 0.394
Call Number UA @ lucian @ c:irua:94749 Serial 369
Permanent link to this record
 

 
Author Ibrahim, I.S.; Schweigert, V.A.; Peeters, F.M.
Title Classical transport of electrons through magnetic barriers Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 56 Issue Pages 7508-7516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1997YA57500066 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19284 Serial 371
Permanent link to this record
 

 
Author Cole, B.E.; Peeters, F.M.; Ardavan, A.; Hill, S.O.; Singleton, J.; Batty, W.; Chamberlain, J.M.; Polisskii, A.; Henini, M.; Cheng, T.
Title Collective cyclotron modes in high mobility two-dimensional hole systems in GaAs-(Ga,Al)As heterojunctions: 1: experiments at low magnetic fields and theory Type A1 Journal article
Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 9 Issue Pages 3163-3179
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997WV06600009 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 20 Open Access
Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
Call Number UA @ lucian @ c:irua:19293 Serial 384
Permanent link to this record
 

 
Author Cole, B.E.; Batty, W.; Singleton, J.; Chamberlain, J.M.; Li, L.; van Bockstal, L.; Imanaka, Y.; Shimamoto, Y.; Miura, N.; Peeters, F.M.; Henini, M.; Cheng, T.
Title Collective cyclotron modes in high mobility two-dimensional hole systems in GaAs-(Ga,Al)As heterojunctions: 2: experiments at magnetic fields of up to forty Tesla Type A1 Journal article
Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 9 Issue Pages 4887-4896
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997XE20300012 Publication Date (up) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
Call Number UA @ lucian @ c:irua:19292 Serial 385
Permanent link to this record