toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moro, G.; Barich, H.; Driesen, K.; Montiel, N.F.; Neven, L.; Mendonca, C.D.; Thiruvottriyur Shanmugam, S.; Daems, E.; De Wael, K. pdf  doi
openurl 
  Title Unlocking the full power of electrochemical fingerprinting for on-site sensing applications Type A1 Journal article
  Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)-based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523396300002 Publication Date 2020-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access  
  Notes ; The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding. ; Approved Most recent IF: 4.3; 2020 IF: 3.431  
  Call Number UA @ admin @ c:irua:168563 Serial 6647  
Permanent link to this record
 

 
Author Swaenen, M.; Stefaniak, E.A.; Frost, R.; Worobiec, A.; Van Grieken, R. doi  openurl
  Title Investigation of inclusions trapped inside Libyan desert glass by Raman microscopy Type A1 Journal article
  Year 2010 Publication Analytical and bioanalytical chemistry Abbreviated Journal  
  Volume 397 Issue 7 Pages 2659-2665  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Several specimens of Libyan desert glass (LDG), an enigmatic natural glass from Egypt, were subjected to investigation by micro-Raman spectroscopy. The spectra of inclusions inside the LDG samples were successfully measured through the layers of glass and the mineral species were identified on this basis. The presence of cristobalite as typical for high-temperature melt products was confirmed, together with co-existing quartz. TiO2 was determined in two polymorphic species rutile and anatase. Micro-Raman spectroscopy proved also the presence of minerals unusual for high-temperature glasses such as anhydrite and aragonite.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280122100004 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:83276 Serial 8125  
Permanent link to this record
 

 
Author Avigo, D.; Godoi, A.F.L.; Janissek, P.R.; Makarovska, Y.; Krata, A.; Potgieter-Vermaak, S.; Alfoldy, B.; Van Grieken, R.; Godoi, R.H.M. doi  openurl
  Title Particulate matter analysis at elementary schools in Curitiba, Brazil Type A1 Journal article
  Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal  
  Volume 391 Issue 4 Pages 1459-1468  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000256088700043 Publication Date 2008-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:68797 Serial 8360  
Permanent link to this record
 

 
Author Cabal Rodríguez, A.E.; Leyva Pernia, D.; Schalm, O.; van Espen, P.J.M. pdf  doi
openurl 
  Title Possibilities of energy-resolved X-ray radiography for the investigation of paintings Type A1 Journal article
  Year 2012 Publication Analytical and bioanalytical chemistry Abbreviated Journal  
  Volume 402 Issue 4 Pages 1471-1480  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract X-ray radiographic images of paintings often show little or no contrast. In order to increase the contrast in radiographic images we measured the X-ray spectrum of a low power X-ray tube, after passing through the painting, with a high energy-resolution SDD detector. To obtain images, the detector is collimated with a 400 mu m diameter pinhole and the painting was moved through the beam in the x and y-direction using a dwell time of a few seconds per pixel. The data obtained consists of a data cube of, typically, 200 x 200 pixels and a 512-channel X-ray spectrum for each pixel, spanning the energy range from 0 to 40 keV. Having the absorbance spectrum available for each pixel, we are able, a posteriori, to produce images by edge subtraction for any given element. In this way high contrast, element-specific, images can be obtained. Because of the high energy-resolution a much simpler edge subtraction algorithm can be applied. We also used principal-component imaging to obtain, in a more automated way, images with high contrast. Some of these images can easily be attributed to specific elements. It turns out that preprocessing of the spectral data is crucial for the success of the multivariate image processing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299842000008 Publication Date 2011-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:96200 Serial 8394  
Permanent link to this record
 

 
Author Dillen, A.; Vandezande, W.; Daems, D.; Lammertyn, J. pdf  doi
openurl 
  Title Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers : a thermodynamic study Type A1 Journal article
  Year 2021 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume 413 Issue 19 Pages 4739-4750  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659366300001 Publication Date 2021-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.431 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.431  
  Call Number UA @ admin @ c:irua:179163 Serial 8713  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.; van Dijk, J. doi  openurl
  Title Computer simulations of a dielectric barrier discharge used for analytical spectrometry Type A1 Journal article
  Year 2007 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume 388 Issue 8 Pages 1583-1594  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000248373300005 Publication Date 2007-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1618-2642;1618-2650; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.431 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.431; 2007 IF: 2.867  
  Call Number UA @ lucian @ c:irua:65036 Serial 466  
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; van der Snickt, G.; de Nolf, W.; Vanmeert, F.; Radepont, M.; Monico, L.; et al. doi  openurl
  Title The use of synchrotron radiation for the characterization of artists' pigments and paintings Type A1 Journal article
  Year 2013 Publication Annual review of analytical chemistry Abbreviated Journal Annu Rev Anal Chem  
  Volume 6 Issue Pages 399-425  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000323887500019 Publication Date 2013-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-1327 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.435 Times cited 46 Open Access  
  Notes ; ; Approved Most recent IF: 7.435; 2013 IF: 7.814  
  Call Number UA @ admin @ c:irua:111315 Serial 5902  
Permanent link to this record
 

 
Author Poma, G.; McGrath, T.J.; Christia, C.; Govindan, M.; Covaci, A. pdf  url
doi  openurl
  Title Emerging halogenated flame retardants in the indoor environment Type A1 Journal article
  Year 2020 Publication Comprehensive analytical chemistry Abbreviated Journal  
  Volume 88 Issue Pages 107-140  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT); Toxicological Centre  
  Abstract Indoor environments are considered an important contributor to external human exposure to halogenated flame retardants (HFRs) due to the large amounts of chemicals currently incorporated in indoor equipment and the time humans spend every day in indoor environments. In this chapter, the presence and use of novel brominated flame retardants (NBFRs), dechlorane plus (DPs), chlorinated organophosphorus flame retardants (Cl-PFRs) and chlorinated paraffins (CPs) in indoor dust, air and consumer products collected from different indoor microenvironments (homes, public indoor spaces, and vehicles) are discussed. While data on the concentrations of HFRs in indoor dust and air are widely available, figures are still scarce for consumer products, such as textiles and foams, furnishings, flooring, electric and electronic products and building materials. This knowledge gaps still represents the biggest obstacle in linking eventual sources of contamination to the presence and chemical patterns in indoor dust and air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 978-0-444-64339-1 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168776 Serial 6505  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: