toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P. doi  openurl
  Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203392 Serial 9042  
Permanent link to this record
 

 
Author Lobato, I.; Partoens, B. url  doi
openurl 
  Title Multiple Dirac particles in AA-stacked graphite and multilayers of graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 16 Pages 165429-165429,9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding formalism we show that in the recently experimentally realized AA-stacked graphite in essence two types of massless relativistic Dirac particles are present with a different effective speed of light. We also investigate how the electronic structure evolves from a single graphene sheet into AA-stacked graphite. It is shown that in contrast to AB-stacked graphene layers, the spectrum of AA-stacked graphene layers can be considered as a superposition of single-layer spectra and only particles with a linear spectrum at the Fermi energy around the K point are present. From the evolution of the band overlap we show that 6 multilayers of AA-stacked graphene already behave as AA-stacked graphite. The evolution of the effective speeds of light of the Dirac particles to their bulk values shows exactly the same behavior. The tight-binding parameters we use to describe AA-stacked graphite and multilayers of graphene are obtained by ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000290113900005 Publication Date 2011-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 68 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89717 Serial 2225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: