toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, Y.Y.; Pourtois, G.; Adelmann, C.; Goux, L.; Govoreanu, B.; Degreave, R.; Jurczak, M.; Kittl, J.A.; Groeseneken, G.; Wouters, D.J. doi  openurl
  Title Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 11 Pages 113513-113513,4  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, CMOS-compatible Ni/HfO2/TiN resistive random access memory stacks demonstrated attractive unipolar switching properties, showing >10(3) endurance and long retention at 150 degrees C. The Ni bottom electrode (BE) improved the switching yield over the NiSiPt BE. To better understand the unipolar forming mechanism, ab initio simulation and time of flight-secondary ion mass spectroscopy were utilized. Compared to the NiSiPt BE, Ni BE gives larger Ni diffusion in the HfO2 and lower formation enthalpy of Ni2+ species during electrical forming. Both the electrical and physical results supported a Ni-injection mechanism for the filament formation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695078]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000302204900091 Publication Date 2012-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:98295 Serial 1674  
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Verhulst, A.S.; Kao, K.-H.; De Meyer, K.; Sorée, B.; Magnus, W.; Groeseneken, G. doi  openurl
  Title A model determining optimal doping concentration and material's band gap of tunnel field-effect transistors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 19 Pages 193509-193509,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We develop a model for the tunnel field-effect transistor (TFET) based on the Wentzel-Kramer-Brillouin approximation which improves over existing semi-classical models employing generation rates. We hereby introduce the concept of a characteristic tunneling length in direct semiconductors. Based on the model, we show that a limited density of states results in an optimal doping concentration as well as an optimal material's band gap to obtain the highest TFET on-current at a given supply voltage. The observed optimal-doping trend is confirmed by 2-dimensional quantum-mechanical simulations for silicon and germanium. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714544]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000304108000098 Publication Date 2012-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 25 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:98948 Serial 2105  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: