|   | 
Details
   web
Records
Author Covaci, L.; Berciu, M.
Title Survival of the Dirac points in rippled graphene Type A1 Journal article
Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 100 Issue 25 Pages 256405
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved using a generalization to the honeycomb lattice of the momentum average approximation, which is accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long lifetimes survive near the Dirac points even for very strong couplings.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000257230500047 Publication Date 2008-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links (up)
Impact Factor 8.462 Times cited 15 Open Access
Notes Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ Serial 4010
Permanent link to this record
 

 
Author Covaci, L.; Marsiglio, F.
Title Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers Type A1 Journal article
Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 73 Issue 1 Pages 014503
Keywords A1 Journal article
Abstract Recent measurements of the Josephson critical current through LSCO/LCO/LSCO thin films showed an unusually large proximity effect. Using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian we describe the proximity effect in weak links between a superconductor with critical temperature T-c and one with critical temperature T-c('), where T-c > T-c('). The weak link (N-') is therefore a superconductor above its own critical temperature and the superconducting regions are considered to have either s-wave or d-wave symmetry. We note that the proximity effect is enhanced due to the presence of superconducting correlations in the weak link. The dc Josephson current is calculated, and we obtain a nonzero value for temperatures greater than T-c(') for sizes of the weak links that can be almost an order of magnitude greater than the conventional coherence length. Considering pockets of superconductivity in the N-' layer, we show that this can lead to an even larger effect on the Josephson critical current by effectively shortening the weak link.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000235009000103 Publication Date 2006-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links (up)
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4427
Permanent link to this record
 

 
Author Doğan, F.; Covaci, L.; Kim, W.; Marsiglio, F.
Title Emerging nonequilibrium bound state in spin-current–local-spin scattering Type A1 Journal article
Year 2009 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 80 Issue 10 Pages 104434
Keywords A1 Journal article
Abstract Magnetization reversal is a well-studied problem with obvious applicability in computer hard drives. One can accomplish a magnetization reversal in at least one of two ways: application of a magnetic field or through a spin current. The latter is more amenable to a fully quantum-mechanical analysis. We formulate and solve the problem whereby a spin current interacts with a ferromagnetic Heisenberg spin chain, to eventually reverse the magnetization of the chain. Spin flips are accomplished through both elastic and inelastic scattering. A consequence of the inelastic-scattering channel, when it is no longer energetically possible, is the occurrence of a nonequilibrium bound state, which is an emergent property of the coupled local plus itinerant spin system. For certain definite parameter values the itinerant spin lingers near the local spins for some time, before eventually leaking out as an outwardly diffusing state. This phenomenon results in spin-flip dynamics and filtering properties for this type of system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000270383100077 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links (up)
Impact Factor 3.836 Times cited Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ Serial 4436
Permanent link to this record
 

 
Author Goodvin, G.L.; Covaci, L.; Berciu, M.
Title Holstein polarons near surfaces Type A1 Journal article
Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue 17 Pages 176402
Keywords A1 Journal article
Abstract We study the effects of a nearby surface on the spectral weight of a Holstein polaron, using the inhomogeneous momentum average approximation which is accurate over the entire range of electron-phonon (e-ph) coupling strengths. The broken translational symmetry is taken into account exactly. We find that the e-ph coupling gives rise to a large additional surface potential, with strong retardation effects, which may bind surface states even when they are not normally expected. The surface, therefore, has a significant effect and bulk properties are recovered only very far away from it. These results demonstrate that interpretation in terms of bulk quantities of spectroscopic data sensitive only to a few surface layers is not always appropriate.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000271164500042 Publication Date 2009-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links (up)
Impact Factor 8.462 Times cited 8 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ Serial 4435
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F.
Title Impurity scattering of wave packets on a lattice Type A1 Journal article
Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 74 Issue 20 Pages 205120
Keywords A1 Journal article
Abstract Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet travels differently in a lattice than in the continuum. We describe quantum scattering in a one-dimensional lattice and illustrate characteristics of quantum transport such as resonant transmission. In particular we examine the transport characteristics of a random trimer model. We demonstrate the real-time propagation of a wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in a spin-chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction between an incoming electron and a spin chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000242409400030 Publication Date 2006-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links (up)
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4428
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F.
Title Hidden symmetries of electronic transport in a disordered one-dimensional lattice Type A1 Journal article
Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 73 Issue 19 Pages 195109
Keywords A1 Journal article
Abstract Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here, we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array of correlated impurities. In particular we show that particles transmit through an impurity array in identical fashion, regardless of the direction of traversal. The demonstration of this fact is straightforward in the continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss the time evolution of these scattering states, to delineate regions (in time and space) where the aforementioned symmetry is violated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237950400042 Publication Date 2006-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links (up)
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4429
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Dogan, F.; Marsiglio, F.
Title Quantum mechanics of spin transfer in coupled electron-spin chains Type A1 Journal article
Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 79 Issue 6 Pages 67004
Keywords A1 Journal article
Abstract The manner in which spin-polarized electrons interact with a magnetized thin film is currently described by a semi-classical approach. This in turn provides our present understanding of the spin transfer, or spin torque phenomenon. However, spin is an intrinsically quantum-mechanical quantity. Here, we make the first strides towards a fully quantum-mechanical description of spin transfer through spin currents interacting with a Heisenberg-coupled spin chain. Because of quantum entanglement, this requires a formalism based on the density matrix approach. Our description illustrates how individual spins in the chain time-evolve as a result of spin transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000250409500023 Publication Date 2007-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links (up)
Impact Factor 1.957 Times cited 3 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ Serial 4430
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
Title Holstein polaron: The effect of coupling to multiple-phonon modes Type A1 Journal article
Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 80 Issue 6 Pages 67001
Keywords A1 Journal article
Abstract We investigate the effects of coupling to multiple-phonon modes on the properties of a Holstein polaron. To this end, we generalize the Momentum Average approximations MA((0)) and MA((1)) to deal with multiple-phonon modes. As for a single-phonon mode, these approximations are found to be numerically very efficient. They become exact for very weak or very strong couplings, and are highly accurate in the intermediate regimes, e.g. the spectral weights obey exactly the first six, respectively eight, sum rules. Our results show that the effect on ground-state properties is cumulative in nature. As a result, if the effective coupling to one mode is much larger than to all the others, this mode effectively determines the ground-state properties. However, even very weak coupling to a second phonon mode has important non-perturbational effects on the higher-energy spectrum, in particular on the dispersion and the phonon statistics of the polaron band. This has important consequences on the analysis and interpretation of data for real materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000251648300016 Publication Date 2007-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links (up)
Impact Factor 1.957 Times cited 9 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ Serial 4431
Permanent link to this record
 

 
Author Marchand, D.; Covaci, L.; Berciu, M.; Franz, M.
Title Giant proximity effect in a phase-fluctuating superconductor Type A1 Journal article
Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 101 Issue 9 Pages 097004
Keywords A1 Journal article
Abstract When a tunneling barrier between two superconductors is formed by a normal material that would be a superconductor in the absence of phase fluctuations, the resulting Josephson effect can undergo an enormous enhancement. We establish this novel proximity effect by a general argument as well as a numerical simulation and argue that it may underlie recent experimental observations of the giant proximity effect between two cuprate superconductors separated by a barrier made of the same material rendered normal by severe underdoping.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000259195800055 Publication Date 2008-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links (up)
Impact Factor 8.462 Times cited 17 Open Access
Notes Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ Serial 4433
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
Title Polaron formation in the presence of Rashba spin-orbit coupling: implications for spintronics Type A1 Journal article
Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 18 Pages 186403
Keywords A1 Journal article
Abstract We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable generalization of the momentum average approximation. While previous work on a parabolic band model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of spin-polarized currents in such materials, and thus for spintronic applications.
Address Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000265948600049 Publication Date 2009-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links (up)
Impact Factor 8.462 Times cited 25 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ Serial 4434
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Peeters, F.M.
Title Nanoengineered nonuniform strain in graphene using nanopillars Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 4 Pages 041405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars. We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306313900001 Publication Date 2012-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100765 Serial 2255
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Covaci, L.; Peeters, F.M.
Title Wave-packet scattering on graphene edges in the presence of a pseudomagnetic field Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 11 Pages 115434
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The scattering of a Gaussian wave packet in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time-dependent Schrodinger equation for the tight-binding model Hamiltonian. Our theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well-known skipping orbits are observed. However, our results demonstrate that in the case of a pseudomagnetic field, induced by nonuniform strain, the scattering by an armchair edge results in a nonpropagating edge state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309174100005 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; Discussions with E. B. Barros are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE (project CONGRAN), and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101833 Serial 3907
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Covaci, L.; Peeters, F.M.
Title Resonant valley filtering of massive Dirac electrons Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 11 Pages 115431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrons in graphene, in addition to their spin, have two pseudospin degrees of freedom: sublattice and valley pseudospin. Valleytronics uses the valley degree of freedom as a carrier of information similarly to the way spintronics uses electron spin. We show how a double-barrier structure consisting of electric and vector potentials can be used to filter massive Dirac electrons based on their valley index. We study the resonant transmission through a finite number of barriers and we obtain the energy spectrum of a superlattice consisting of electric and vector potentials. When a mass term is included, the energy bands and energy gaps at the K and K′ points are different and they can be tuned by changing the potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309173300004 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro- GRAPHENE within the project CONGRAN, and the Flemish Science Foundation (FWO-Vl). Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101835 Serial 2896
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 10 Pages 107001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700014 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101850 Serial 3801
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Tight-binding study of bilayer graphene Josephson junctions Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 18 Pages 184505-184507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient simulations of the tight-binding Bogoliubov-de-Gennes model, we solved self-consistently for the pair correlation and the Josephson current in a superconducting-bilayer graphene-superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short- and long-junction regimes. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single-layer graphene except at the Dirac point, where remarkable differences in the proximity effect are found, as well as a suppression of the superconducting current in the long-junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if the junction length is larger than the Fermi length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310840400005 Publication Date 2012-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:105149 Serial 3661
Permanent link to this record
 

 
Author de Sousa, J.S.; Covaci, L.; Peeters, F.M.; Farias, G.A.
Title Time-dependent investigation of charge injection in a quantum dot containing one electron Type A1 Journal article
Year 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 112 Issue 9 Pages 093705-93709
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction of an injected electron towards a quantum dot (QD) containing a single confined electron is investigated using a flexible time-dependent quantum mechanics formalism, which allows both electrons to move and undergo quantum transitions. Different scenarios combining quantum dot dimensions, dielectric constant, injected wave packet energy, and width were explored, and our main results are: (i) due to the large characteristic transitions times between the confined state in the quantum dot and the delocalized state in the continuum, it is relatively difficult to ionize the occupied QD by Coulomb interaction solely and (ii) the charging state of the quantum dot can be sensed by direct injection of charges. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759292]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000311968400052 Publication Date 2012-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes ; This work was financially supported by the Brazilian National Research Council (CNPq), under Contract No. NanoBioEstruturas 555183/2005-0, Fundao Cearense de Apoio ao Desenvolvimento Cientfico e Tecnolgico (Funcap), CAPES, Pronex/CNPq/ Funcap, the Bilateral program between Flanders and Brazil, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068; 2012 IF: 2.210
Call Number UA @ lucian @ c:irua:106014 Serial 3664
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134509-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390000006 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108469 Serial 3660
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Field effect on surface states in a doped Mott-insulator thin film Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035131-35136
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single-band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport. DOI: 10.1103/PhysRevB.87.035131
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000001 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110086 Serial 1190
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 14 Pages 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Surface correlation effects in two-band strongly correlated slabs Type A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 7 Pages 075601-75609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/ center to center/ surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000330719500009 Publication Date 2014-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. One of us (LC) is a postdoctoral fellow of the FWO-Vl. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115723 Serial 3395
Permanent link to this record
 

 
Author Lin, S.-H.; Milošević, M.V.; Covaci, L.; Janko, B.; Peeters, F.M.
Title Quantum rotor in nanostructured superconductors Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 4 Issue Pages 4542-4546
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000333555300007 Publication Date 2014-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 4 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-Vl), the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38, and the US National Science Foundation via NSF-NIRT ECS-0609249. ; Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:116848 Serial 2785
Permanent link to this record
 

 
Author García, J.H.; Uchoa, B.; Covaci, L.; Rappoport, T.G.
Title Adatoms and Anderson localization in graphene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 8 Pages 085425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We address the nature of the disordered state that results from the adsorption of adatoms in graphene. For adatoms that sit at the center of the honeycomb plaquette, as in the case of most transition metals, we show that the ones that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms where Anderson localization is suppressed, leading to an exotic metallic state with large and rare charge droplets, that localizes only at the Dirac point. We identify the experimental conditions for the observation of the Anderson transition for adatoms in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341238600004 Publication Date 2014-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We acknowledge F. Guinea, K. Mullen, A. H. Castro Neto, and E. Mucciolo for discussions. B. U. acknowledges the University of Oklahoma for financial support and NSF Grant No. DMR-1352604 for partial support. T.G.R. and J.H.G acknowledge Brazilian agencies CNPq, FAPERJ, and “INCT de nanoestruturas de carbono” for financial support. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119258 Serial 57
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 1 Pages 014522
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341233800010 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119266 Serial 1938
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Nonlinear response to electric field in extended Hubbard models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 20 Pages 205121
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electric-field response of a one-dimensional ring of interacting fermions, where the interactions are described by the extended Hubbard model, is investigated. By using an accurate real-time propagation scheme based on the Chebyshev expansion of the evolution operator, we uncover various nonlinear regimes for a range of interaction parameters that allows modeling of metallic and insulating (either charge density wave or spin density wave insulators) rings. The metallic regime appears at the phase boundary between the two insulating phases and provides the opportunity to describe either weakly or strongly correlated metals. We find that the fidelity susceptibility of the ground state as a function of magnetic flux piercing the ring provides a very good measure of the short-time response. Even completely different interacting regimes behave in a similar manner at short time scales as long as the ground-state fidelity susceptibility is the same. Depending on the strength of the electric field we find various types of responses: persistent currents in the insulating phase, a dissipative regime, or damped Bloch-like oscillations with varying frequencies or even irregular in nature. Furthermore, we also consider the dimerization of the ring and describe the response of a correlated band insulator. In this case the distribution of the energy levels is more clustered and the Bloch-like oscillations become even more irregular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345423300002 Publication Date 2014-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek – FWO) and the Methusalem program of the Flemish government. One of us (L. C.) receives support as a postdoctoral fellow of the FWO. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122204 Serial 2355
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M.
Title Tomasch effect in nanoscale superconductors Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 024508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooperpair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently and describe the TE determined by two types of processes, involving two-or three-subband QPIs. Both types of QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the symmetries of the system. A reduced 4 x 4 inter-subband BdG Hamiltonian is established in order to describe analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000348473700003 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:123864 Serial 3670
Permanent link to this record
 

 
Author Garcia, J.H.; Covaci, L.; Rappoport, T.G.
Title Real-space calculation of the conductivity tensor for disordered topological matter Type A1 Journal article
Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 114 Issue 114 Pages 116602
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We describe an efficient numerical approach to calculate the longitudinal and transverse Kubo conductivities of large systems using Bastin's formulation. We expand the Green's functions in terms of Chebyshev polynomials and compute the conductivity tensor for any temperature and chemical potential in a single step. To illustrate the power and generality of the approach, we calculate the conductivity tensor for the quantum Hall effect in disordered graphene and analyze the effect of the disorder in a Chern insulator in Haldane's model on a honeycomb lattice.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000351430600010 Publication Date 2015-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 69 Open Access
Notes ; We acknowledge A. R. Hernandez, A. Ferreira, and E. Mucciolo for discussions. T. G. R and J. H. G acknowledge the Brazilian agencies CNPq, FAPERJ, and INCT de Nanoestruturas de Carbono for financial support. L. C. acknowledges the Flemish Science Foundation (FWO-Vlaanderen) for financial support. ; Approved Most recent IF: 8.462; 2015 IF: 7.512
Call Number c:irua:125467 Serial 2827
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 214504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355647100003 Publication Date 2015-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126433 Serial 2089
Permanent link to this record
 

 
Author Richardson, C.L.; Edkins, S.D.; Berdiyorov, G.R.; Chua, C.J.; Griffiths, J.P.; Jones, G.A.C.; Buitelaar, M.R.; Narayan, V.; Sfigakis, F.; Smith, C.G.; Covaci, L.; Connolly, M.R.;
Title Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 245418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000356129800012 Publication Date 2015-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership. Supporting data for this paper is available at the DSpace@Cambridge data repository (https://www.repository.cam.ac.uk/handle/1810/248242). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126982 Serial 3865
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M.
Title Position-dependent effect of non-magnetic impurities on superconducting properties of nanowires Type A1 Journal article
Year 2015 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 109 Issue 109 Pages 17010
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Anderson's theorem states that non-magnetic impurities do not change the bulk properties of conventional superconductors. However, as the dimensionality is reduced, the effect of impurities becomes more significant. Here we investigate superconducting nanowires with diameter comparable to the Fermi wavelength $\lambda_F$ (which is less than the superconducting coherence length) by using a microscopic description based on the Bogoliubov-de Gennes method. We find that: 1) impurities strongly affect the superconducting properties, 2) the effect is impurity position dependent, and 3) it exhibits opposite behavior for resonant and off-resonant wire widths. We show that this is due to the interplay between the shape resonances of the order parameter and the subband energy spectrum induced by the lateral quantum confinement. These effects can be used to manipulate the Josephson current, filter electrons by subband and investigate the symmetries of the superconducting subband gaps.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000348592100029 Publication Date 2015-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 1.957; 2015 IF: 2.095
Call Number UA @ lucian @ c:irua:128424 Serial 4227
Permanent link to this record