toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Zhang, G.; Huang, S.; Chaves, A.; Yan, H. pdf  doi
openurl 
  Title Black phosphorus as tunable Van der Waals quantum wells with high optical quality Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 6073-6080  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of “forbidden” transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953463300001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196100 Serial 7565  
Permanent link to this record
 

 
Author (up) Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M. url  doi
openurl 
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 6277-6285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404808000110 Publication Date 2017-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569  
Permanent link to this record
 

 
Author (up) Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G. pdf  url
doi  openurl
  Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 16 Pages 15836-15846  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041649900001 Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:198376 Serial 8840  
Permanent link to this record
 

 
Author (up) Zhuo, X.; Mychinko, M.; Heyvaert, W.; Larios, D.; Obelleiro-Liz, M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Morphological and Optical Transitions during Micelle-Seeded Chiral Growth on Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chiral plasmonics is a rapidly developing field where breakthroughs and unsolved problems coexist. We have recently reported binary surfactant-assisted seeded growth of chiral gold nanorods (Au NRs) with high chiroptical activity. Such a seeded-growth process involves the use of a chiral cosurfactant that induces micellar helicity, in turn driving the transition from achiral to chiral Au NRs, from both the morphological and the optical points of view. We report herein a detailed study on both transitions, which reveals intermediate states that were hidden so far. The correlation between structure and optical response is carefully analyzed, including the (linear and CD) spectral evolution over time, electron tomography, the impact of NR dimensions on their optical response, the variation of the absorption-to-scattering ratio during the evolution from achiral to chiral Au NRs, and the near-field enhancement related to chiral plasmon modes. Our findings provide further understanding of the growth process of chiral Au NRs and the associated optical changes, which will facilitate further study and applications of chiral nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878324400001 Publication Date 2022-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 17 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (ERC-AdG-4DbioSERS-787510 to L.M.L.-M. and ERC-CoG-REALNANO-815128 to S.B.) and the MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00). X.Z. acknowledges funding from the Juan de la Cierva fellowship (FJC2018-036104-I) and the University Development Fund (UDF01002665, CUHK-Shenzhen). D.L., M.O.-L., and J.M.T. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Ciencia, Innovación y Universidades, under Projects PID2020-116627RB-C21 and PID2020-116627RB-C22, as well as from the ERDF/Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (atlanTTic) and ERDF/Extremadura Regional Government under Projects IB18073 and GR18055. This work was performed in the framework of the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). The authors acknowledge Dr. Guillermo González-Rubio for providing suggestions for synthesis and Dr. Irantzu Llarena for assisting with the CD measurements. Approved Most recent IF: 17.1  
  Call Number EMAT @ emat @c:irua:191815 Serial 7116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: