|   | 
Details
   web
Records
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex ionic crystals in superconducting films with magnetic pinning arays Type A1 Journal article
Year 2004 Publication Physicalia magazine Abbreviated Journal
Volume 26 Issue Pages 355-370
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57241 Serial 3852
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex lattices in superconducting films with magnetic pinning arrays Type A1 Journal article
Year 2005 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys
Volume 139 Issue 1 Pages 257-272
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 2005-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited 12 Open Access
Notes Approved Most recent IF: 1.3; 2005 IF: 0.753
Call Number UA @ lucian @ c:irua:57245 Serial 3853
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex lattices in superconducting films with magnetic pinning arrays Type A1 Journal article
Year 2004 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 93 Issue Pages 267006,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000226054600058 Publication Date 2004-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 105 Open Access
Notes Approved Most recent IF: 8.462; 2004 IF: 7.218
Call Number UA @ lucian @ c:irua:57242 Serial 3854
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex molecules induced by a magnetic disk on top of a superconducting film: influence of the magnet geometry Type A1 Journal article
Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 404 Issue Pages 281-284
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000221211500051 Publication Date 2004-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 4 Open Access
Notes Approved Most recent IF: 1.404; 2004 IF: 1.072
Call Number UA @ lucian @ c:irua:44980 Serial 3857
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex molecules near a magnetic disk on top of a superconducting film Type A1 Journal article
Year 2003 Publication Physicalia magazine Abbreviated Journal
Volume 25 Issue Pages 185-197
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57240 Serial 3858
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex nucleation in magnetically nanotextured superconductors: magnetic-field-driven and thermal scenarios Type A1 Journal article
Year 2005 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 94 Issue Pages 227001,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000229700800059 Publication Date 2005-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 48 Open Access
Notes Approved Most recent IF: 8.462; 2005 IF: 7.489
Call Number UA @ lucian @ c:irua:57243 Serial 3859
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex nucleation in superconducting films with arrays of in-plane dipoles Type A1 Journal article
Year 2006 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 437/438 Issue Pages 208-212
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000238395700050 Publication Date 2006-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 16 Open Access
Notes Approved Most recent IF: 1.404; 2006 IF: 0.792
Call Number UA @ lucian @ c:irua:58359 Serial 3860
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex manipulation in a superconducting matrix with view on applications Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 19 Pages 192501,1-192501,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k×l matrix of pinning sites defines the desired combination of n bits of information (2n = k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000277756400040 Publication Date 2010-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES and ESF-AQDJJ networks. ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83657 Serial 3869
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex matter in the presence of magnetic pinning centra Type A1 Journal article
Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys
Volume 130 Issue 3/4 Pages 311-320
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000180742900013 Publication Date 2003-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited 3 Open Access
Notes Approved Most recent IF: 1.3; 2003 IF: 1.171
Call Number UA @ lucian @ c:irua:44988 Serial 3875
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.
Title Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: th London approximation Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 104522,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220813500094 Publication Date 2004-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:44986 Serial 3880
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Perali, A.
Title Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue Type A1 Journal article
Year 2015 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 060201
Keywords A1 Journal article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000354110200001 Publication Date 2015-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links
Impact Factor 2.878 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number UA @ lucian @ Serial 3945
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Rakib, M.T.I.; Peeters, F.M.
Title Superconducting disk with magnetic coating: re-entrant Meissner phase, novel critical and vortex phenomena Type A1 Journal article
Year 2007 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 77 Issue 2 Pages 27005,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000245671500025 Publication Date 2007-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 1 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ c:irua:64309 Serial 3351
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M.
Title Magnetic pinning of vortices in a superconducting film: the (anti)vortex-magnetic dipole interaction energy in the London approximation Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue Pages 174519,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000179611700103 Publication Date 2002-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 76 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:44982 Serial 1887
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M.
Title Multi-vortex states of a thin superconducting disk in a step-like external magnetic field Type A1 Journal article
Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 369 Issue Pages 343-346
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000174200000062 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 5 Open Access
Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
Call Number UA @ lucian @ c:irua:44977 Serial 2214
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M.
Title The vortex-magnetic dipole interaction in the London approximation Type A1 Journal article
Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys
Volume 130 Issue 3/4 Pages 321-331
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000180742900014 Publication Date 2003-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited 3 Open Access
Notes Approved Most recent IF: 1.3; 2003 IF: 1.171
Call Number UA @ lucian @ c:irua:44987 Serial 3868
Permanent link to this record
 

 
Author (up) Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M.
Title Vortex structure of thin mesoscopic disks in the presence of an inhomogeneous magnetic field Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue Pages 024515,1-19
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000177338400110 Publication Date 2002-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:44981 Serial 3895
Permanent link to this record
 

 
Author (up) Milovanović, S.
Title Electronic transport properties in nano- and micro-engineered graphene structures Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143632 Serial 4595
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Andelkovic, M.; Covaci, L.; Peeters, F.M.
Title Band flattening in buckled monolayer graphene Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 24 Pages 245427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The strain fields of periodically buckled graphene induce a periodic pseudomagnetic field (PMF) that modifies the electronic band structure. From the geometry, amplitude, and period of the periodic pseudomagnetic field, we determine the necessary conditions to access the regime of correlated phases by examining the band flattening. As compared to twisted bilayer graphene the proposed system has the advantages that (1) only a single layer of graphene is needed, (2) one is not limited to hexagonal superlattices, and (3) narrower flat bandwidth and larger separation between flat bands can be induced. We, therefore, propose that periodically strained graphene single layers can become a platform for the exploration of exotic many-body phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602844600007 Publication Date 2020-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 11 Open Access OpenAccess
Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). We thank E. Y. Andrei, Y. Jiang, and J. Mao for fruitful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:175021 Serial 6684
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Covaci, L.; Peeters, F.M.
Title Strain fields in graphene induced by nanopillar mesh Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 8 Pages 082534
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The mechanical and electronic properties of a graphene membrane placed on top of a triangular superlattice of nanopillars are investigated. We use molecular dynamics simulations to access the deformation fields and the tight-binding approaches to calculate the electronic properties. Ripples form in the graphene layer that span across the unit cell, connecting neighboring pillars, in agreement with recent experiments. We find that the resulting pseudo-magnetic field (PMF) varies strongly across the unit cell. We investigate the dependence of PMF on unit cell boundary conditions, height of the pillars, and the strength of the van der Waals interaction between graphene and the substrate. We find direct correspondence with typical experiments on pillars, showing intrinsic “slack” in the graphene membrane. PMF values are confirmed by the local density of states calculations performed at different positions of the unit cell showing pseudo-Landau levels with varying spacings. Our findings regarding the relaxed membrane configuration and the induced strains are transferable to other flexible 2D membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460033800038 Publication Date 2019-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 5 Open Access
Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:158605 Serial 5231
Permanent link to this record
 

 
Author (up) Milovanovic, S.P.; Masir, M.R.; Peeters, F.M.
Title Bilayer graphene Hall bar with a pn-junction Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue 11 Pages 113706
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model, and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: (i) both sides of the junction have the same carrier type and (ii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000324827200031 Publication Date 2013-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:111169 Serial 234
Permanent link to this record
 

 
Author (up) Milovanovic, S.P.; Masir, M.R.; Peeters, F.M.
Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 19 Pages 193701-193708
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319295200022 Publication Date 2013-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:108999 Serial 1371
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 12 Pages 123507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000343004400090 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:121119 Serial 1704
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Magnetic electron focusing and tuning of the electron current with a pn-junction Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 4 Pages 043719-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331210800066 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 21 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:115801 Serial 1866
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Spectroscopy of snake states using a graphene Hall bar Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 23 Pages 233502-233504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000328634900090 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:113710 Serial 3074
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Moldovan, D.; Peeters, F.M.
Title Veselago lensing in graphene with a p-n junction: Classical versus quantum effects Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 154308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363535800022 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:129452 Serial 3969
Permanent link to this record
 

 
Author (up) Milovanovic, S.P.; Peeters, F.M.
Title Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages 105203
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369849200003 Publication Date 2016-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 3 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44
Call Number c:irua:131907 Serial 4025
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Peeters, F.M.
Title Strain controlled valley filtering in multi-terminal graphene structures Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 109 Issue 109 Pages 203108
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by the deformation allows electrons from only one valley to transmit, and a current of electrons from a single valley is generated at the opposite side of the locally strained region. We show that valley filtering is most effective with bumps of a certain height and width. Despite the fact that the highest contribution to the polarized current comes from electrons from the lowest sub-band, contributions of other sub-bands are not negligible and can significantly enhance the output current. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000388000000049 Publication Date 2016-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 50 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:139165 Serial 4463
Permanent link to this record
 

 
Author (up) Milovanovic, S.P.; Peeters, F.M.
Title Strained graphene Hall bar Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue 29 Pages 075601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, RB, around zero-magnetic field and the occurrence of side-peaks in RB. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in RB are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000391584900001 Publication Date 2016-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:140381 Serial 4464
Permanent link to this record
 

 
Author (up) Milovanović, S.P.; Peeters, F.M.
Title Strained graphene structures : from valleytronics to pressure sensing Type P1 Proceeding
Year 2018 Publication Nanostructured Materials For The Detection Of Cbrn Abbreviated Journal
Volume Issue Pages 3-17 T2 - NATO Advanced Research Workshop on Nanos
Keywords P1 Proceeding; Pharmacology. Therapy; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477758900001 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-024-1306-9; 978-94-024-1304-5; 978-94-024-1303-8; 978-94-024-1303-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:161972 Serial 8583
Permanent link to this record