toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author (up) Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
 

 
Author (up) Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author (up) Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 368 Issue Pages 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author (up) Spanoghe, J.; Ost, K.J.; Van Beeck, W.; Vermeir, P.; Lebeer, S.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple bacteria screening for photoautohydrogenotrophic food production : are new H₂-fed isolates faster and nutritionally better than photoheterotrophically obtained reference species? Type A1 Journal article
  Year 2022 Publication New biotechnology Abbreviated Journal New Biotechnol  
  Volume 72 Issue Pages 38-47  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoautohydrogenotrophic enrichments of wastewater treatment microbiomes were performed to obtain hypothetically high-potential specialist species for biotechnological applications. From these enrichment cultures, ten photoautohydrogenotrophic species were isolated: six Rhodopseudomonas species, three Rubrivivax members and Rhodobacter blasticus. The performance of these isolates was compared to three commonly studied, and originally photoheterotrophically enriched species (Rhodopseudomonas palustris, Rhodobacter capsulatus and Rhodobacter sphaeroides), designated as reference species. Repeated subcultivations were applied to improve the initial poor performance of the isolates (acclimation effect), which resulted in increases in both maximum growth rate and protein productivity. However, the maximum growth rate of the reference species remained 3–7 times higher compared to the isolates (0.42–0.84 d−1 at 28 °C), while protein productivities remained 1.5–1.7 times higher. This indicated that H2-based enrichment did not result in photoautohydrogenotrophic specialists, suggesting that the reference species are more suitable for intensified biomass and protein production. On the other hand, the isolates were able to provide equally high protein quality profiles as the references species, providing full dietary essential amino acid matches for human food. Lastly, the effect of metabolic carbon/electron switching (back and forth between auto- to heterotrophic conditions) initially boosted µmax when returning to photoautohydrogenotrophic conditions. However, the switch negatively impacted lag phase, protein productivities and pigment contents. In the case of protein productivity, the acquired acclimation was partially lost with decreases of up to 44 % and 40 % respectively for isolates and reference species. Finally, the three reference species, and specifically Rh. capsulatus, remained the most suitable candidate(s) for further biotechnological development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861078800005 Publication Date 2022-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:190188 Serial 7199  
Permanent link to this record
 

 
Author (up) Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author (up) Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 287 Issue Pages 121398  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469414500008 Publication Date 2019-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159661 Serial 7916  
Permanent link to this record
 

 
Author (up) Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 145-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000018 Publication Date 2018-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155981 Serial 8173  
Permanent link to this record
 

 
Author (up) Wambacq, E.; Alloul, A.; Grunert, O.; Carrette, J.; Vermeir, P.; Spanoghe, J.; Sakarika, M.; Vlaeminck, S.E.; Haesaert, G. url  doi
openurl 
  Title Aerobes and phototrophs as microbial organic fertilizers : exploring mineralization, fertilization and plant protection features Type A1 Journal article
  Year 2022 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 17 Issue 2 Pages e0262497-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Organic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g. Bloom® and Synagro); yet microbial fertilizer blends to align the nutrient release profile to the plant’s needs are, thus far, unexplored. Moreover, most research only focuses on direct fertilization effects without considering added value properties, such as disease prevention. This study has explored three promising types of microbial fertilizers, namely dried biomass from a consortium of aerobic heterotrophic bacteria, a microalga (Arthrospira platensis) and a purple non-sulfur bacterium (Rhodobacter sphaeroides). Mineralization and nitrification experiments showed that the nitrogen mineralization profile can be tuned to the plant’s needs by blending microbial fertilizers, without having toxic ammonium peaks. In a pot trial with perennial ryegrass (Lolium perenne L.), the performance of microbial fertilizers was similar to the reference organic fertilizer, with cumulative dry matter yields of 5.6–6.7 g per pot. This was confirmed in a pot trial with tomato (Solanum lycopersicum L.), showing an average total plant length of 90–99 cm after a growing period of 62 days for the reference organic fertilizer and the microbial fertilizers. Moreover, tomato plants artificially infected with powdery mildew (Oidium neolycopersici), a devastating disease for the horticultural industry, showed reduced disease symptoms when A. platensis was present in the growing medium. These findings strengthen the application potential of this novel class of organic fertilizers in the bioeconomy, with a promising match between nutrient mineralization and plant requirements as well as added value in crop protection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000775890100025 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:185568 Serial 7122  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: