toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bleiner, D.; Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V. pdf  doi
openurl 
  Title Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling Type A1 Journal article
  Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The laser ablation-induced plasma was used as a composition-con trolled source for ion implantation in Si crystals. Then, laser ablation in combination with inductively coupled plasma mass spectrometry was used for the elemental depth profiling of the implanted samples. Monte Carlo simulations permitted us to conclude that a depth resolution of tens of nm would be necessary to define the shape of the implantation profiles, as is obtained using XPS and RBS, whereas a hundred nm depth resolution is sufficient to determine the total implanted dose. The detection power of LA-ICP-MS would routinely allow rapid analytical control on the trace level implanted dose. Nevertheless, this technique is limited in terms of depth profiling resolution due to pulse mixing and signal tailing induced during the aerosol transport. Raw signal processing procedures were developed for the minimization of shapeline dispersion, deconvolution of pulse mixing and more appropriate assessment of the implanted profiles. Shapeline dispersion could be corrected for by determining the signal waning constant and implementing this information for a non-affine alibi transformation of the LA-ICP-MS signal traces. Pulse mixing deconvolution was attained with an algorithm that considered accumulated signal intensity due to pulse-on-pulse stacking, i.e., the latest pulse on top of all antecedent individual pulses' exponential tails proportionally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000233958900018 Publication Date 2005-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.379; 2005 IF: 3.640  
  Call Number UA @ lucian @ c:irua:99278 Serial 4525  
Permanent link to this record
 

 
Author (up) Bleiner, D.; Bogaerts, A.; Belloni, F.; Nassisi, V. doi  openurl
  Title Laser-induced plasmas from the ablation of metallic targets: the problem of the onset temperature, and insights on the expansion dynamics Type A1 Journal article
  Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 101 Issue 8 Pages 083301,1-5  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laser-induced plasmas are transient systems rapidly aging in few nanoseconds of evolution. Time-of-flight spectrometry allowed studying initial plasma characteristics based on frozen translational degrees of freedom, hence overcoming intrinsic limitations of optical spectroscopy. Experimental ion velocity distributions were reconstructed as developed during the longitudinal plasma expansion. The obtained onset plasma temperatures are in the range of similar to 18-45 eV depending on the ablated metals. Also the ion angular spreads were found to be a function of ablated metal, e.g., the narrowest for Fe, the broadest for Al, due to different collisional coupling in the plasma population. (c) 2007 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000246072200047 Publication Date 2007-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.068; 2007 IF: 2.171  
  Call Number UA @ lucian @ c:irua:64635 Serial 1788  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: