toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pilehvar, S.; De Wael, K. isbn  openurl
  Title Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms Type H1 Book chapter
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 173-196  
  Keywords H1 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-119-24390-8 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:146374 Serial 5804  
Permanent link to this record
 

 
Author Pilehvar, S.; De Wael, K. url  doi
openurl 
  Title Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms Type A1 Journal article
  Year 2015 Publication Biosensors Abbreviated Journal  
  Volume 5 Issue 4 Pages 712-735  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2015-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6374 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:129157 Serial 5805  
Permanent link to this record
 

 
Author Cardell, C.; Urosevic, M.; Sebastián-Pardo, E.; Horemans, B.; Kontozova-Deutsch, V.; Potgieter-Vermaak, S.; Bencs, L.; Anaf, K.W.; De Wael, K.; Van Grieken, R. isbn  openurl
  Title Risks of atmospheric aerosol for cultural heritage assets in Granada (Spain) Type H1 Book chapter
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 45-49  
  Keywords H1 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-138-00009-4 Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; The authors thank the 'Patronato de la Alhambra y Generalife' and the CEAMA. Financial support was provided by Andalusian Research Groups RNM-179 and Project CGL2012-30729. ; Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:111266 Serial 5819  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Pilehvar, S.; Blust, R.; De Wael, K. url  doi
openurl 
  Title Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells Type A1 Journal article
  Year 2016 Publication Chemosensors Abbreviated Journal  
  Volume 4 Issue 3 Pages 16  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silvergold core shell (Ag@Au), goldsilver core shell (Au@Ag), and silvergold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382480000006 Publication Date 2016-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; Ezat Hamidi-Asl was financially supported by Belspo (University of Antwerp). The authors are thankful to Femke De Croock for her technical support and to Stanislav Trashin for his worthwhile comments on the manuscript. ; Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:135411 Serial 5886  
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; De Wael, K.; Lugwisha, E.; Van Grieken, R. pdf  doi
openurl 
  Title Water quality assessment in Pangani river basin, Tanzania : natural and anthropogenic influences on concentrations of nutrients and inorganic ions Type A1 Journal article
  Year 2013 Publication International journal of river basin management Abbreviated Journal  
  Volume 11 Issue 1 Pages 55-75  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The ongoing rapid expansions of human activities and population dynamics have potential impact on the environmental quality of the Pangani river basin, one of the largest water resources in Tanzania, including possible loadings of different kinds of micro-contaminants. However, specific extents of the impacts are rather not well investigated. In this work, we assessed the environmental quality of the basin, based on seasonal characterisation of physicochemical water and sediments parameters, dissolved inorganic ions and nutrient loads. The contributions of geochemical processes and land-use practices were evaluated by multivariate correlations and principal component analysis (PCA). Hierarchical cluster analysis was used to classify similar water quality stations and identify the most and least enriched ones. Surface waters were slightly alkaline, characterised by low total dissolved solids (48652 mg/L). Extremely low oxygen concentration (2.0 mg/L) was also a cause of concern at one station. The Na+ and HCO3 − ions provided the dominant cation and anion, respectively. PCA identified weathering of carbonate and Na+ bearing rocks, gypsum dissolution and atmospheric deposition of sea-salt as the major factors controlling the ionic composition, contributing more than 60% of the spatial variance. Concentration profiles of the chemical species showed a generally low level of anthropogenic inputs, except at a few locations where nitrate and nitrite were significantly enriched above the limits of safe exposure, with patterns indicating influences of farming and livestock keeping. A seasonal difference was observed, with lower ion concentrations during the rainy season, likely due to the dilution effect of increased water discharge. The study provides new insights into the environmental quality of the basin, and indicates the need for continuous monitoring and assessment of the chemical species in the area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2013-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1571-5124 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:104621 Serial 5909  
Permanent link to this record
 

 
Author Storme, P.; Fransen, E.; De Wael, K.; Caen, J. url  openurl
  Title X-Ray Fluorescence as an analytical tool for studying the copper matrices in the collection of the Museum Plantin-Moretus Type A1 Journal article
  Year 2017 Publication De gulden passer Abbreviated Journal  
  Volume 95 Issue 1 Pages 7-33  
  Keywords A1 Journal article; Engineering sciences. Technology; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0777-5067 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:144111 Serial 5913  
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K. pdf  url
doi  openurl
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.  
  Volume Issue Pages anse.202000012  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2629-2742 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved (up) Most recent IF: NA  
  Call Number AXES @ axes @c:irua:173031 Serial 6427  
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R. pdf  doi
openurl 
  Title Assessing atmospheric dry deposition via water-soluble ionic composition of roadside leaves Type A1 Journal article
  Year 2020 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, and originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527821700001 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169584 Serial 6451  
Permanent link to this record
 

 
Author Van Loon, J.; De Jong, M.; De Wael, K.; Du Bois, E. file  isbn
openurl 
  Title Transposing testing from lab to on-site environment : a case of cocaine powder sampling Type P3 Proceeding
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract This paper reports on the transition process to convert a specific lab technique to the on-site, real-life environment. Bringing a lab test to an on-site environment involves many difficulties regarding to the context, people skills and environmental support. Within this project, a case about sampling for an electrochemical measurement, was investigated as a basis to reason upon some general conclusions related to the process of transposing lab-tests to an on-site environment. The current lab test was analysed and compared with a focus group discussion with future users. Based on the findings, assumptions for the new sampling technique in the specific case were formulated. New low-tech methods to achieve the sampling were extensively tested and verified. Starting from this chosen case an argumentation was set up to generalise the conclusions, by reasoning on other cases of products that already passed this transition to the field. Based on a comparison, we could discuss that the selected parameters related to impact of the context environment, of the people that should handle the tests, related to the reasons for transposing the technology, and related to the technology that will be transposed to the on-site environment, were of importance of almost all cases and can therefore be considered as context-independent and related to the transfer to on-site testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6384-131-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169896 Serial 6637  
Permanent link to this record
 

 
Author Balashova, I.O.; Tolbin, A.Y.; Tarakanov, P.A.; Krot, A.R.; Fedorova, K., V; Sergeeva, I.A.; Trashin, S.A.; De Wael, K.; Pushkarev, V.E.; Koifman, M.O.; Ponomarev, G., V. url  doi
openurl 
  Title A covalently linked dyad based on zinc phthalocyanine and methylpheophorbide α : synthetic and physicochemical study Type A1 Journal article
  Year 2021 Publication Macroheterocycles Abbreviated Journal  
  Volume 14 Issue 1 Pages 40-50  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The first covalently linked conjugate of metal phthalocyaninate and chlorin e(6) derivative has been obtained by transesterification of alpha-ketomethyl ester in methylpheophorbide a with zinc(II) 2-(2-hydroxymethylbenzyloxy)-9(10),16(17),23(24)-tri-tert-butylphthalocyaninate under mild conditions. The dyad exhibits a panchromatic nature revealing both the phthalocyanine and pheophorbide derived bands in the UV-Vis absorption spectrum. The H-1 NMR spectroscopy data combined with theoretical calculations indicate the presence of spatial intramolecular interactions between the phthalocyanine, pheophorbide and spacer fragments of the dyad allowing to forecast its enhanced nonlinear optical properties, as well as the characteristic energy transfer from the excited pheophorbide subunit to the phthalocyanine core. Indeed, when excited in the UV-Vis range, the conjugate shows red fluorescence with the spectral maximum at 686 nm, which is close to the one of the initial zinc phthalocyaninate. Furthermore, the dyad effectively generates singlet oxygen and, in the presence of polyvinylpyrrolidone (PVP) as biocompatible solubilizer, forms stable micellar saline solutions with the particles ranged in size between 40 and 100 nm. These nanoparticles represent promising third-generation photosensitizing systems for application in theranostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659682000003 Publication Date 2021-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179196 Serial 7386  
Permanent link to this record
 

 
Author Muhammad, S.; Wuyts, K.; De Wael, K.; Samson, R. url  doi
openurl 
  Title Does leaf micro-morphology influence the recognition of particles on SEM images? Type A3 Journal article
  Year 2021 Publication International Journal of Environmental Pollution and Remediation Abbreviated Journal  
  Volume 9 Issue Pages 22-37  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Scanning electron microscopy (SEM) remains a popular approach to determine the shape, size, density and elemental composition of particles collected on leaf surfaces, but the effect of leaf micro-morphology on particle counts is not very well known. In this study, leaves of sixteen urban plant species were examined for particle density in June and September 2016 using SEM. The investigated plant species differed in leaf micro-morphology involving trichomes, raised stomata, epicuticular wax crystals and convex epidermal cells forming deep grooves between cells. The particle density on leaves of the investigated plant species was estimated by particle size fraction and leaf side. Particle density was significantly higher on the adaxial (AD) leaf side compared to the abaxial (AB) leaf side and higher for fine-particles than coarse-particles. The effect of trichome density on particle density of the AB and the AD leaf side was indicated to be significant and positive for both coarse and fine-particles in June but not in September. The successive repeated measurements elucidated that features constructing the topography of a leaf surface such as trichomes, stomata, and epidermal cells frequently contributed towards the edge enhancement effect, resulting in exaggerated particle counts. Besides, the mechanical drift contributed to the disparity in particle density measurements. Lastly, the reduction in particle density between successive measurements were imputed on the charging effect. These results enable us to suggest that in addition to characterization of micro-morphological features on a leaf surface, SEM will continue to be a useful approach for determining the particle: shape, size, elemental composition and density of the deposited particles. Nonetheless, the disparity in particle density measurements can occur due to abnormal particle recognition. Based on the results of September, we recommend that within-session successive repeated measurements (~ n ≥ 5) need to be performed to remove measurement uncertainties and obtain reliable quantitative data of particle counts using SEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181797 Serial 7822  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
  Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 378 Issue Pages 133159-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904590500008 Publication Date 2022-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192381 Serial 8824  
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C. url  doi
openurl 
  Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
  Year 2023 Publication Sensors Abbreviated Journal  
  Volume 23 Issue 13 Pages 6193-18  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033277900001 Publication Date 2023-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198181 Serial 8857  
Permanent link to this record
 

 
Author Samal, S.K.; Soenen, S.; Puppi, D.; De Wael, K.; Pati, S.; De Smedt, S.; Braeckmans, K.; Dubruel, P. url  doi
openurl 
  Title Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications Type A1 Journal article
  Year 2022 Publication International journal of molecular sciences Abbreviated Journal  
  Volume 23 Issue 19 Pages 11867-12  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The H-1 NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867759600001 Publication Date 2022-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:191566 Serial 8836  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Sleegers, N.; Cánovas, R.; Debruyne, G.; De Wael, K. pdf  url
doi  openurl
  Title Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry Type A1 Journal article
  Year 2022 Publication Analytica chimica acta Abbreviated Journal  
  Volume 1206 Issue Pages 339732  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The high toxicity, endocrine-disrupting effects and low (bio)degradability commonly attributed to phenolic compounds have promoted their recognition as priority toxic pollutants. For this reason, the monitoring of these compounds in industrial, domestic and agricultural streams is crucial to prevent and decrease their toxicity in our daily life. To confront this relevant environmental issue, we propose the use of a combi-electrosensor which combines singlet oxygen (1O2)-based photoelectrochemistry (PEC) with square wave voltammetry (SWV). The high sensitivity of the PEC sensor (being a faster alternative for traditional COD measurements) ensures the detection of nmol L−1 levels of phenolic compounds while the SWV measurements (being faster than the color test kits) allow the differentiation between phenolic compounds. Herein, we report on the development of such a combi-electrosensor for the sensitive and selective detection of phenol (PHOH) in the presence of related phenolic compounds such as hydroquinone (HQ), bisphenol A (BPA), resorcinol (RC) and catechol (CC). The PEC sensor was able to determine the concentration of PHOH in spiked river samples containing only PHOH with a recovery between 96% and 111%. The SWV measurements elucidated the presence of PHOH, HQ and CC in the spiked samples containing multiple phenol compounds. Finally, the practicality of the combi-electrosensor set-up with a dual SPE containing two working electrodes and shared reference and counter electrodes was demonstrated. As a result, the combination of the two techniques is a powerful and valuable tool in the analysis of phenolic samples, since each technique improves the general performance by overcoming the inherent drawbacks that they display independently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000793070200016 Publication Date 2022-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:187499 Serial 8848  
Permanent link to this record
 

 
Author Slavkovic, S.; Shoara, A.A.; Churcher, Z.R.; Daems, E.; De Wael, K.; Sobott, F.; Johnson, P.E. url  doi
openurl 
  Title DNA binding by the antimalarial compound artemisinin Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal  
  Volume 12 Issue 1 Pages 133  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740510500120 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:184507 Serial 8851  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Schram, J.; Parrilla, M.; Daems, D.; Slosse, A.; Van Durme, F.; De Wael, K. url  doi
openurl 
  Title Electrochemical methods for on-site multidrug detection at festivals Type A1 Journal article
  Year 2022 Publication Sensors & Diagnostics Abbreviated Journal  
  Volume 1 Issue 1 Pages 793-802  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Two electrochemical methodologies, i.e. flowchart and dual-sensor, were developed to aid law enforcement present at festivals to obtain a rapid indication of the presence of four illicit drugs in suspicious samples encountered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:188521 Serial 8856  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Moro, G.; Foumthuim, C.J.D.; Spinaci, M.; Martini, E.; Cimino, D.; Balliana, E.; Lieberzeit, P.; Romano, F.; Giacometti, A.; Campos, R.; De Wael, K.; Moretto, L.M. pdf  doi
openurl 
  Title How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures : an electrochemical and computational study Type A1 Journal article
  Year 2022 Publication Analytica chimica acta Abbreviated Journal  
  Volume 1204 Issue Pages 339740-12  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltam-metric techniques. The experimental data interpretation was supported by molecular dynamics simu-lations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.(c) 2022 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789493000010 Publication Date 2022-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:188658 Serial 8880  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Rutten, R.; De Wael, K. pdf  url
doi  openurl
  Title Novel (photo)electrochemical analysis of aqueous industrial samples containing phenols Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal  
  Volume 181 Issue Pages 107778-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Phenols are considered as toxic pollutants and their discharge into the environment by industries is regulated by a concentration limit. As these limits are in the low mg L−1 to µg L−1-range, sensitive methods are necessary to detect these phenols. Here, aqueous industrial phenolic samples throughout a cleaning process were analyzed by two novel electrochemical sensors. Both the photoelectrochemical (PEC) sensor and the square wave voltammetric (SWV) sensor could successfully follow the decrease of the concentration of phenols along the industrial cleaning process. The discharge sample (μg L−1) could only be analyzed by the PEC sensor and not by the SWV sensor, as the phenolic concentration was close to the LOD of the latter. With HPLC-diode array detector (DAD) measurements, classical phenols such as phenol (PHOH), hydroquinone, resorcinol and o-cresol could be identified in the industrial samples, and their presence could be linked to the electrochemical responses. At last, the performance of the PEC and SWV sensors were compared with commercial colorimetric and chemical oxygen demand (COD) test kits. This comparison demonstrated the high sensitivity of the PEC sensor in the μg L−1 concentrated phenolic samples. Together with the identification of the redox peaks through HPLC-DAD analysis, the SWV sensor can be a powerful tool in the qualitative analysis of mg L−1 concentrated phenolic samples due to its speed, simplicity and absence of laborious sample pre-treatment steps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000837838400003 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:189428 Serial 8906  
Permanent link to this record
 

 
Author Ehirim, T.J.; Ozoemena, O.C.; Mwonga, P.V.; Haruna, A.B.; Mofokeng, T.P.; De Wael, K.; Ozoemena, K.I. url  doi
openurl 
  Title Onion-like carbons provide a favorable electrocatalytic platform for the sensitive detection of tramadol drug Type A1 Journal article
  Year 2022 Publication ACS Omega Abbreviated Journal  
  Volume 7 Issue 51 Pages 47892-47905  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work reports the first study on the possible application of nanodiamond-derived onion-like carbons (OLCs), in comparison with conductive carbon black (CB), as an electrode platform for the electrocatalytic detection of tramadol (an important drug of abuse). The physicochemical properties of OLCs and CB were determined using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The OLC exhibits, among others, higher surface area, more surface defects, and higher thermal stability than CB. From the electrochemical analysis (interrogated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy), it is shown that an OLC-modified glassy carbon electrode (GCE-OLC) allows faster electron transport and electrocatalysis toward tramadol compared to a GCE-CB. To establish the underlying science behind the high performance of the OLC, theoretical calculations (density functional theory (DFT) simulations) were conducted. DFT predicts that OLC allows for weaker surface binding of tramadol (Ead = -26.656 eV) and faster kinetic energy (K.E. = -155.815 Ha) than CB (Ead = -40.174 eV and -305.322 Ha). The GCE-OLC shows a linear calibration curve for tramadol over the range of similar to 55 to 392 mu M, with high sensitivity (0.0315 mu A/mu M) and low limit of detection (LoD) and quantification (LoQ) (3.8 and 12.7 mu M, respectively). The OLC-modified screen-printed electrode (SPE-OLC) was successfully applied for the sensitive detection of tramadol in real pharmaceutical formulations and human serum. The OLC-based electrochemical sensor promises to be useful for the sensitive and accurate detection of tramadol in clinics, quality control, and routine quantification of tramadol drugs in pharmaceutical formulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903165200001 Publication Date 2022-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:193391 Serial 8908  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K. pdf  url
doi  openurl
  Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal  
  Volume 179 Issue Pages 107518-107519  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000809675500010 Publication Date 2022-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:188454 Serial 8910  
Permanent link to this record
 

 
Author Parrilla, M.; Slosse, A.; Van Echelpoel, R.; Montiel, F.N.; Langley, A.R.; Van Durme, F.; De Wael, K. url  doi
openurl 
  Title Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device Type A1 Journal article
  Year 2022 Publication Chemosensors Abbreviated Journal  
  Volume 10 Issue 3 Pages 108-116  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The smuggling of illicit drugs urges the development of new tools for rapid on-site identification in cargos. Current methods rely on presumptive color tests and portable spectroscopic techniques. However, these methods sometimes exhibit inaccurate results due to commonly used cutting agents, the colorful nature of the sample or because the drugs are smuggled in common goods. Interestingly, electrochemical sensors can deal with these specific problems. Herein, an electrochemical device is presented that uses affordable screen-printed electrodes for the electrochemical profiling of several illicit drugs by square-wave voltammetry (SWV). The identification of the illicit compound is based on the oxidation potential of the analyte. Hence, a library of electrochemical profiles is built upon the analysis of illicit drugs and common cutting agents. This library allows the design of a tailor-made script that enables the identification of each drug through a user-friendly interface (laptop or mobile phone). Importantly, the electrochemical test is compared by analyzing 48 confiscated samples with other portable devices based on Raman and FTIR spectroscopy as well as a laboratory standard method (i.e., gas chromatography-mass spectrometry). Overall, the electrochemical results, obtained through the analysis of different samples from confiscated cargos at an end-user site, present a promising alternative to current methods, offering low-cost and rapid testing in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000775813500001 Publication Date 2022-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:187766 Serial 8920  
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K. pdf  url
doi  openurl
  Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
  Year 2022 Publication Drug testing and analysis Abbreviated Journal  
  Volume 14 Issue 8 Pages 1471-1481  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000790965700001 Publication Date 2022-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:187767 Serial 8921  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; Ceto, X.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies Type A1 Journal article
  Year 2022 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 357 Issue Pages 131345  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the mu M level, LODs between 1.8 and 5.3 mu M for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of the individual substances from the overlapped voltammograms was built using partial least squares regression (PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the mu M level, with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745113900003 Publication Date 2021-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:185446 Serial 8922  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Pelmuş, M.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title The role of singlet oxygen, superoxide, hydroxide, and hydrogen peroxide in the photoelectrochemical response of phenols at a supported highly fluorinated zinc phthalocyanine Type A1 Journal article
  Year 2022 Publication ChemElectroChem Abbreviated Journal  
  Volume 9 Issue 6 Pages e202200108-10  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Photoelectrochemical (PEC) sensing of phenolic compounds using singlet oxygen (1O2)-generating photocatalysts has emerged as a powerful detection tool. However, it is currently not known how experimental parameters, such as pH and applied potential, influence the generation of reactive oxygen species (ROS) and their photocurrents. In this article, the PEC response was studied over the 6 to 10 pH range using a rotating (ring) disk (R(R)DE) set-up in combination with quenchers, to identify the ROS formed upon illumination of a supported photosensitizer, F64PcZn. The photocurrents magnitude depended on the applied potential and the pH of the buffer solution. The anodic responses were caused by the oxidation of O2.−, generated due to the quenching of 1O2 with −OH and the reaction of 3O2 with [F64Pc(3-)Zn]. The cathodic responses were assigned to the reduction of 1O2 and O2.−, yielding H2O2. These insights may benefit 1O2 – based PEC sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000773947300003 Publication Date 2022-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:187524 Serial 8926  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Trashin, S.; De Wael, K. pdf  url
doi  openurl
  Title Singlet oxygen-based photoelectrochemical detection of DNA Type A1 Journal article
  Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 195 Issue Pages 113652  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The current work, designed for the photoelectrochemical detection of DNA, evaluates light-responsive DNA probes carrying molecular photosensitizers generating singlet oxygen (1O2). We take advantage of their chromophore’s ability to produce 1O2 upon photoexcitation and subsequent photocurrent response. Type I, fluorescent and type II photosensitizers were studied using diode lasers at 406 nm blue, 532 nm green and 659 nm red lasers in the presensce and absence of a redox reporter, hydroquinone (HQ). Only type II photosensitizers (producing 1O2) resulted in a noticeable photocurrent in 1–4 nA range upon illumination, in particular, dissolved DNA probes labeled with chlorin e6 and erythrosine were found to give a well-detectable photocurrent response in the presence of HQ. Whereas, Type I photosensitizers and fluorescent chromophores generate negligible photocurrents (<0.15 nA). The analytical performance of the sensing system was evaluated using a magnetic beads-based DNA assay on disposable electrode platforms, with a focus to enhance the sensitivity and robustness of the technique in detecting complementary DNA targets. Amplified photocurrent responses in the range of 70–100 nA were obtained and detection limits of 17 pM and 10 pM were achieved using magnetic beads-captured chlorin e6 and erythrosine labeled DNA probes respectively. The presented novel photoelectrochemical detection can further be optimized and employed in applications for which enzymatic amplification such as polymerase chain reaction (PCR) is not applicable owing to their limitations and as an effective alternative to colorimetric detection when rapid detection of specific nucleic acid targets is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705223300003 Publication Date 2021-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:181796 Serial 8930  
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K. pdf  url
doi  openurl
  Title Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose Type A1 Journal article
  Year 2022 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 249 Issue Pages 123695-123699  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5–22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826441800002 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:188955 Serial 8955  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
  Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 197 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719366400003 Publication Date 2021-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:183086 Serial 8957  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: