|   | 
Details
   web
Record
Author Yusupov, M.; Privat-Maldonado, A.; Cordeiro, R.M.; Verswyvel, H.; Shaw, P.; Razzokov, J.; Smits, E.; Bogaerts, A.
Title Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy Type A1 Journal article
Year 2021 Publication Redox Biology Abbreviated Journal Redox Biol
Volume 43 Issue Pages 101968
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Multiple cancer therapies nowadays rely on oxidative stress to damage cancer cells. Here we investigated the biological and molecular effect of oxidative stress on the interaction between CD44 and hyaluronan (HA), as interrupting their binding can hinder cancer progression. Our experiments demonstrated that the oxidation of HA decreased its recognition by CD44, which was further enhanced when both CD44 and HA were oxidized. The reduction of CD44–HA binding negatively affected the proliferative state of cancer cells. Our multi-level atomistic simulations revealed that the binding free energy of HA to CD44 decreased upon oxidation. The effect of HA and CD44 oxidation on CD44–HA binding was similar, but when both HA and CD44 were oxidized, the effect was much larger, in agreement with our experiments. Hence, our experiments and computations support our hypothesis on the role of oxidation in the disturbance of CD44–HA interaction, which can lead to the inhibition of proliferative signaling pathways inside the tumor cell to induce cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000657371800005 Publication Date 2021-04-14
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited Open Access OpenAccess
Notes Fwo; The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, where all computational work was performed. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:177780 Serial 6750
Permanent link to this record