toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Samae, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Koizumi, S.; Mussi, A.; Schryvers, D.; Idrissi, H. pdf  url
doi  openurl
  Title Stress-induced amorphization triggers deformation in the lithospheric mantle Type A1 Journal article
  Year (down) 2021 Publication Nature Abbreviated Journal Nature  
  Volume 591 Issue 7848 Pages 82-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The mechanical properties of olivine-rich rocks are key to determining the mechanical coupling between Earth's lithosphere and asthenosphere. In crystalline materials, the motion of crystal defects is fundamental to plastic flow(1-4.) However, because the main constituent of olivine-rich rocks does not have enough slip systems, additional deformation mechanisms are needed to satisfy strain conditions. Experimental studies have suggested a non-Newtonian, grain-size-sensitive mechanism in olivine involving grain-boundary sliding(5,6). However, very few microstructural investigations have been conducted on grain-boundary sliding, and there is no consensus on whether a single or multiple physical mechanisms are at play. Most importantly, there are no theoretical frameworks for incorporating the mechanics of grain boundaries in polycrystalline plasticity models. Here we identify a mechanism for deformation at grain boundaries in olivine-rich rocks. We show that, in forsterite, amorphization takes place at grain boundaries under stress and that the onset of ductility of olivine-rich rocks is due to the activation of grain-boundary mobility in these amorphous layers. This mechanism could trigger plastic processes in the deep Earth, where high-stress conditions are encountered (for example, at the brittle-plastic transition). Our proposed mechanism is especially relevant at the lithosphere-asthenosphere boundary, where olivine reaches the glass transition temperature, triggering a decrease in its viscosity and thus promoting grain-boundary sliding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626921700014 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 40.137  
  Call Number UA @ admin @ c:irua:176656 Serial 6738  
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Mussi, A.; Schryvers, D.; Idrissi, H. doi  openurl
  Title Research data supporting for Stress-induced amorphization triggers deformation in the lithospheric mantle Type Dataset
  Year (down) 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180668 Serial 6881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: