toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E. url  doi
openurl 
  Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
  Year (down) 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 6771-6778  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362920700037 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 50 Open Access OpenAccess  
  Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950  
Permanent link to this record
 

 
Author Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; Schrittwieser, S.; Schotter, J.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Gatel, C.; Soulantica, K. pdf  url
doi  openurl
  Title Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods Type A1 Journal article
  Year (down) 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 2792-2804  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized coreshell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351791800055 Publication Date 2015-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess  
  Notes 312483 Esteem2; 246791 Countatoms; 335078 Colouratom; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:125380 c:irua:125380 Serial 87  
Permanent link to this record
 

 
Author Javon, E.; Lubk; Cours, R.; Reboh, S.; Cherkashin, N.; Houdellier, F.; Gatel, C.; Hytch, M.J. doi  openurl
  Title Dynamical effects in strain measurements by dark-field electron holography Type A1 Journal article
  Year (down) 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 147 Issue Pages 70-85  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three dimensional strain held within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000343157400009 Publication Date 2014-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:121108 Serial 769  
Permanent link to this record
 

 
Author Liakakos, N.; Gatel, C.; Blon, T.; Altantzis, T.; Lentijo-Mozo, S.; Garcia-Marcelot, C.; Lacroix, L.M.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Soulantica, K. pdf  url
doi  openurl
  Title CoFe nanodumbbells : synthesis, structure, and magnetic properties Type A1 Journal article
  Year (down) 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 5 Pages 2747-2754  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the solution phase synthesis, the structural analysis, and the magnetic properties of hybrid nanostructures combining two magnetic metals. These nano-objects are characterized by a remarkable shape, combining Fe nanocubes on Co nanorods. The topological composition, the orientation relationship, and the growth steps have been studied by advanced electron microscopy techniques, such as HRTEM, electron tomography, and state-of-the-art 3-dimensional elemental mapping by EDX tomography. The soft iron nanocubes behave as easy nucleation centers that induce the magnetization reversal of the entire nanohybrid, leading to a drastic modification of the overall effective magnetic anisotropy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000336074800080 Publication Date 2014-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 27 Open Access OpenAccess  
  Notes The authors thank the ANR for the project “Batmag”, the French national project EMMA (ANR12 BS10 013 01), the European Commission for the FP7 NAMDIATREAM project (EU NMP4-LA-2010-246479), and the METSA network for the HRTEM. This has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative- I3). It was also supported by Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 24691-COUNTATOMS and ERC Starting Grant # 335078-COLOURATOMS).; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116953 Serial 377  
Permanent link to this record
 

 
Author Lubk, A.; Javon, E.; Cherkashin, N.; Reboh, S.; Gatel, C.; Hytch, M. pdf  doi
openurl 
  Title Dynamic scattering theory for dark-field electron holography of 3D strain fields Type A1 Journal article
  Year (down) 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 136 Issue Pages 42-49  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Dark-held electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000327884700006 Publication Date 2013-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 18 Open Access  
  Notes European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference312483 – ESTEEM2); esteem2_jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:112836 Serial 766  
Permanent link to this record
 

 
Author Boullay, P.; David, A.; Sheets, W.C.; Lüders, U.; Prellier, W.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Gatel, C.; Vincze, G.; Radi, Z. url  doi
openurl 
  Title Microstructure and interface studies of LaVO3/SrVO3 superlattices Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 12 Pages 125403-125403,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and interface characteristics of (LaVO3)6m(SrVO3)m superlattices deposited on a (100)-SrTiO3 substrate were studied using transmission electron microscopy (TEM). Cross-section TEM studies revealed that both LaVO3 (LVO) and SrVO3 (SVO) layers are good single-crystal quality and epitaxially grown with respect to the substrate. It is evidenced that LVO layers are made of two orientational variants of a distorted perovskite compatible with bulk LaVO3, while SVO layers suffers from a tetragonal distortion due to the substrate-induced stain. Electron energy loss spectroscopy investigations indicate changes in the fine structure of the V L23 edge, related to a valence change between the LaVO3 and the SrVO3 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288160300006 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88648UA @ admin @ c:irua:88648 Serial 2054  
Permanent link to this record
 

 
Author Verbeeck, J.; Hébert; Rubino, S.; Novák, P.; Rusz, J.; Houdellier, F.; Gatel, C.; Schattschneider, P. doi  openurl
  Title Optimal aperture sizes and positions for EMCD experiments Type A1 Journal article
  Year (down) 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 108 Issue 9 Pages 865-872  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The signal-to-noise ratio (SNR) in energy-loss magnetic chiral dichroism (EMCD)the equivalent of X-ray magnetic circular dichroism (XMCD) in the electron microscopeis optimized with respect to the detector shape, size and position. We show that an important increase in SNR over previous experiments can be obtained when taking much larger detector sizes. We determine the ideal shape of the detector but also show that round apertures are a good compromise if placed in their optimal position. We develop the theory for a simple analytical description of the EMCD experiment and then apply it to dynamical multibeam Bloch wave calculations and to an experimental data set. In all cases it is shown that a significant and welcome improvement of the SNR is possible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000258747600009 Publication Date 2008-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 27 Open Access  
  Notes This work was supported by the European Commission under contract no. 508971 CHIRALTEM. J.V. and F.H. thank the financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. Thanks to J.P. Morniroli for making the Fe sample available. Approved Most recent IF: 2.843; 2008 IF: 2.629  
  Call Number UA @ lucian @ c:irua:76492UA @ admin @ c:irua:76492 Serial 2480  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: