toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Muys, M.; Coppens, J.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Photosynthetic oxygenation for urine nitrification Type A1 Journal article
  Year (down) 2018 Publication Water science and technology Abbreviated Journal  
  Volume 78 Issue 1 Pages 183-194  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445517100020 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152908 Serial 8381  
Permanent link to this record
 

 
Author Decostere, B.; Coppens, J.; Vervaeren, H.; Vlaeminck, S.E.; De Gelder, L.; Boon, N.; Nopens, I.; Van Hulle, S.W.H. pdf  doi
openurl 
  Title Kinetic exploration of intracellular nitrate storage in marine microalgae Type A1 Journal article
  Year (down) 2017 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume 52 Issue 14 Pages 1303-1311  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, a recently developed model accounting for intracellular nitrate storage kinetics was thoroughly studied to understand and compare the storage capacity of Phaeodactylum tricornutum and Amphora coffeaeformis. In the first stage the identifiability of the biokinetic parameters was examined. Next, the kinetic model was calibrated for both microalgal species based on experimental observations during batch growth experiments. Two kinetic parameters were calibrated, namely the maximum specific growth rate (mu(max)) and the nitrate storage rate (k(sto)). A significant difference was observed for the nitrate storage rate between both species. For P. tricornutum, the nitrate storage rate was much higher (k(sto) = 0.036m(3) g(-1) DW d(-1)) compared to A. coffeaeformis (k(sto) = 0.0004m(3) g(-1) DW d(-1)). This suggests that P. tricornutum has a more efficient nitrate uptake ability and intracellular nitrate storage capacity and also indicates the need for determination of k(sto) in order to quantify nitrate storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415634300004 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1093-4529; 1532-4117 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147467 Serial 8137  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Follow the N and P road : high-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management Type A1 Journal article
  Year (down) 2016 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 115 Issue Pages 9-21  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nutrient management is key to secure food production in the context of a growing global population, rising resource scarcity and increasing pressure on the environment. To map the potential towards increasing nutrient use efficiencies and reduce environmental losses, a high-resolution insight of the nitrogen (N) and phosphorus (P) nutrient streams is pivotal. In this study, a substance flow analysis for N and P is presented for the nutrient intensive region of Flanders (6,211,065 inhabitants) in Belgium for the year 2009. A set of 160 nutrient fluxes was quantified throughout 21 economic and environmental compartments, with a particular focus on 10 waste management processes. A total nutrient load of 20 kg N cap(-1) yr(-1) (ca. 73% to the air and 28% to surface waters) and 0.53 kg P cap(-1) yr(-1) (to surface waters) is emitted to the environment; with crop and livestock production as the main contributors (49% of N and 36% of P). The food supply chain revealed a fertilizer-to-consumer efficiency of 14% for N as well as for P, with important losses embedded in waste streams such as excess manure. Advanced manure and waste processing facilities nevertheless offer the opportunity for enhanced nutrient recycling to increase the nutrient use efficiencies and reduce the dependency of inorganic fertilizers. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384852500002 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:137229 Serial 7977  
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
  Year (down) 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 211 Issue Pages 41-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375186700006 Publication Date 2016-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139913 Serial 8307  
Permanent link to this record
 

 
Author Sui, Y.; Alloul, A.; Muys, M.; Makyeme, M.; Coppens, J.; Verstraete, W.; Vlaeminck, S.E. openurl 
  Title Invigorating the renaissance of single cell protein : safe opportunities for nutrient recovery and reuse as feed ingredient Type P3 Proceeding
  Year (down) 2016 Publication Abbreviated Journal  
  Volume Issue Pages 12 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151128 Serial 8130  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  openurl
  Title The nitrogen and phosphorus budget of Flanders : a tool for efficient resource management Type P3 Proceeding
  Year (down) 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151142 Serial 8308  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: