|   | 
Details
   web
Records
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A.
Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
Year (down) 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels
Volume 3 Issue 6 Pages 1388-1395
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469258600021 Publication Date 2019-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Study of positive and negative plasma catalytic oxidation of ethylene Type A1 Journal article
Year (down) 2017 Publication Environmental technology Abbreviated Journal Environ Technol
Volume 38 Issue 12 Pages 1554-1561
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15kV. This shows the potential of plasma catalysis as indoor air purification technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402018900010 Publication Date 2016-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3330 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 1 Open Access
Notes ; The authors wish to thank the University of Antwerp for supporting and funding this research. ; Approved Most recent IF: 1.751
Call Number UA @ admin @ c:irua:144351 Serial 5993
Permanent link to this record
 

 
Author Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A.
Title CO2conversion in a dielectric barrier discharge plasma: N2in the mix as a helping hand or problematic impurity? Type A1 Journal article
Year (down) 2016 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci
Volume 9 Issue 9 Pages 999-1011
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent

gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372243600030 Publication Date 2015-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited 68 Open Access
Notes The authors acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 29.518
Call Number c:irua:133169 Serial 4020
Permanent link to this record
 

 
Author Van Wesenbeeck, K.
Title Plasma catalysis as an efficient and sustainable air purification technology Type Doctoral thesis
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages 171 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-514-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:135267 Serial 8388
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Plasmacatalysis : a sustainable and efficient indoor air treatment Type P3 Proceeding
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:127488 Serial 5984
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Study of a TiO2 photocatalytic coating for use in plasma catalysis Type A2 Journal article
Year (down) 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 78 Issue 1 Pages 227-233
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:105388 Serial 5991
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Plasma catalysis : integration of a photocatalytic coating in a corona discharge unit Type P3 Proceeding
Year (down) 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:127487 Serial 5982
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis Type A1 Journal article
Year (down) 2013 Publication Journal of environmental solutions Abbreviated Journal
Volume 2 Issue 1 Pages 16-24
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The combination of a non-thermal plasma with catalysis is considered as a sustainable indoor air purification technology to achieve complete oxidation at reduced energy cost with a longer electrode lifetime. An optimal window of operation for plasma assisted catalysis is found by varying the polarity, the applied voltage, the relative humidity of the gas phase and the configuration of the plasma reactor. The results show that, in general, negative corona discharge can obtain higher nitric oxide (NO) conversion efficiencies compared to positive corona. It is also clear that at higher applied voltages, higher conversion efficiency can be reached. The effect of relative humidity, however, is not found to be significant in the range (0 20.3 %) tested in this work. Additionally, the configuration of the plasma reactor is changed by varying the amount of pins that are attached at the collector electrode. The results show that there is an optimum at 10 pairs of pins to obtain a high conversion efficiency of NO. By applying a coating on the collector electrode of the plasma reactor, it is possible to see the influence of the coating on the performance of the plasma system, which was operating in the previously found optimal window. It stands clear that the use of a plasma assisted catalysis system has high potential as an integrated and sustainable indoor air purification technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:108646 Serial 5966
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Plasma assisted catalysis : an efficient and sustainable indoor air purification technology Type P3 Proceeding
Year (down) 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:127490 Serial 5981
Permanent link to this record