|   | 
Details
   web
Record
Author Marteleur, M.; Idrissi, H.; Amin-Ahmadi, B.; Prima, F.; Schryvers, D.; Jacques, P.J.
Title On the nucleation mechanism of {112} < 111 > mechanical twins in as-quenched beta metastable Ti-12 wt.% Mo alloy Type A1 Journal article
Year (down) 2019 Publication Materialia Abbreviated Journal
Volume 7 Issue Pages Unsp 100418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently developed beta-metastable Ti grades take advantage of the simultaneous activation of TRIP and TWIP effects for enhancing their work hardening rate. However, the role of each plasticity mechanism on the macroscopic mechanical response is still unclear. In this work, the nucleation mechanism of the first activated plasticity mechanism, namely {112} < 111 > twinning, was investigated. Firstly, post-mortem TEM analysis showed that twins nucleate on pre-existing microstructural defects such as thermal jogs with the zonal dislocation mechanism. The precipitation of the omega phase on twin boundaries has been observed, as well as the emission of numerous dislocations from super-jogs present in these twin boundaries. It is also shown that {112} < 111 > twins act as effective dislocation sources for the subsequent plasticity mechanisms such as beta -> alpha '' martensitic transformation and {332} < 111 > twinning. Secondly, in situ TEM tensile testing of the investigated Ti grade highlighted the primary role of the initial defect configuration present in the microstructure. It is shown that twins cannot nucleate without the presence of specific defects allowing the triggering of the dislocation decomposition needed for the twinning mechanism highlighted in investigated bulk samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537131000052 Publication Date 2019-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:170326 Serial 6875
Permanent link to this record