|   | 
Details
   web
Records
Author Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; van der Snickt, G.
Title IR reflectography and active thermography on artworks : the added value of the 1.53 µm band Type A1 Journal article
Year (down) 2018 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 8 Issue 1 Pages 50
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Infrared Radiation (IR) artwork inspection is typically performed through active thermography and reflectography with different setups and cameras. While Infrared Radiation Reflectography (IRR) is an established technique in the museum field, exploiting mainly the IR-A (0.71.4 µm) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (35 μ m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we assess to which extent the less investigated IR-B band (1.53 μ m) can combine the information obtained from both setups. The application of IR-B systems is relatively rare as there are only a limited amount of commercial systems available due to the technical complexity of the lens coating. This is mainly added as a so-called broadband option on regular Mid-wave infrared radiation (MWIR) (IR-C/35 μ m) cameras to increase sensitivity for high temperature applications in industry. In particular, four objects were studied in both reflectographic and thermographic mode in the IR-B spectral range and their results benchmarked with IR-A and IR-C images. For multispectral application, a single benchmark is made with macroscopic reflection mode Fourier transform infrared (MA-rFTIR) results. IR-B proved valuable for visualisation of underdrawings, pencil marks, canvas fibres and wooden grain structures and potential pathways for additional applications such as pigment identification in multispectral mode or characterization of the support (panels, canvas) are indicated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424388800050 Publication Date 2018-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited 4 Open Access
Notes ; This research has been funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) by the support to the TETRA project 'SINT: Smart Integration of Numerical modelling and Thermal inspection' with project number HBC.2017.0032. Furthermore, the research leading to these results has received funding from the Research Foundation Flanders (FWO) travel grant V4.010.16N and the Stimpro stimuli of UAntwerpen under project ID 32864. We would like to end with a special thanks to the MiViM research chair of Prof. Xavier Maldague and the support of the full team in supporting the preliminary measurements of this research. ; Approved Most recent IF: 1.679
Call Number UA @ admin @ c:irua:149164 Serial 5677
Permanent link to this record
 

 
Author Steenackers, G.; Peeters, J.; Janssens, K.
Title Sublayer composition evaluation of Artwork using active thermography Type P1 Proceeding
Year (down) 2018 Publication Quantitative infrared thermography T2 – QIRT 2018 : 14th Quantitative InfraRed Thermography Conference Abbreviated Journal
Volume Issue Pages 503-506
Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Infrared artwork inspection is typically performed through active thermography and infrared reflectography (IRR) with different setups and cameras. While IRR is an established technique in the museum field, exploiting mainly the IR-A (0.7 – 1.4 mu m) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (3 -5 mu m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we investigate the usability of an IR-B+C system to identify overpainted works of art below a relatively thick absorbing layer of lead white paint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-940283-94-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This research was funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) via support for the TETRA project, “SINT: Smart Integration of Numerical modeling and Thermal inspection,” project number HBC.2017.0032. The researchers received funding from the Antwerp University IOF-council through project PSID-34924 entitled “Fast Broadband Lock-In Thermography for Fragile Structures Using System Identification.” ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:153415 Serial 5854
Permanent link to this record
 

 
Author Nelen, D.; Manshoven, S.; Peeters, J.R.; Vanegas, P.; D'Haese, N.; Vrancken, K.
Title A multidimensional indicator set to assess the benefits of WEEE material recycling Type A1 Journal article
Year (down) 2014 Publication Journal of cleaner production Abbreviated Journal
Volume 83 Issue Pages 305-316
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract EU strategies for waste management have long recognized the key role of recycling to move towards sustainable consumption and production. This resulted in a range of regulatory measures, among which the Waste Electrical and Electronic Equipment (WEEE) directive, which sets weight-based targets for recovery, preparation for re-use and recycling. The increasing strategic relevance of the supply of raw materials has, however, spurred a more integrated approach towards resource efficiency. In addition to the prevention of disposal, recycling practices are now also meant to contribute to sustainable materials management by pursuing (i) a higher degree of material cycle closure, (ii) an improved recovery of strategically relevant materials, and (iii) the avoidance of environmental burdens associated with the extraction and refining of primary raw materials. In response to this evolution, this paper reports about the development of an indicator set that allows to quantitatively demonstrate these recycling benefits, hence going further than the weight-based objectives employed in the WEEE directive. The indicators can be calculated for WEEE recycling processes for which information is available on both input and output fractions. It offers a comprehensive framework that aims to support decision making processes on product design, to identify opportunities for the optimization of WEEE End-of-Life scenarios, and to assess the achieved (or expected) results of implemented (or planned) recycling optimization strategies. The paper is illustrated by a case study on the recycling of LCD televisions. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343781500030 Publication Date 2014-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:121160 Serial 7393
Permanent link to this record
 

 
Author Hermans, I.; Breynaert, E.; Poelman, H.; de Gryse, R.; Liang, D.; Van Tendeloo, G.; Maes, A.; Peeters, J.; Jacobs, P.
Title Silica-supported chromium oxide: colloids as building blocks Type A1 Journal article
Year (down) 2007 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 9 Issue 39 Pages 5382-5386
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000249925500022 Publication Date 2007-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved Most recent IF: 4.123; 2007 IF: 3.343
Call Number UA @ lucian @ c:irua:66752 Serial 3000
Permanent link to this record