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Resumo

Materiais supercondutores têm despertado uma atividade significativa de pesquisa
nos últimos anos, especialmente no desenvolvimento de dispositivos eletrônicos. Esses dis-
positivos já são utilizados ou espera-se que sejam aplicados em breve em várias áreas,
como detectores de campo de alta precisão e baixo custo, detectores de fóton único ultra-
sensíveis, diodos supercondutores, tecnologias de memória e comunicação, neurônios arti-
ficiais e até mesmo na computação quântica, onde podem servir como plataformas para
qubits. O interesse em dispositivos supercondutores foi renovado com a descoberta da
supercondutividade em materiais atomicamente finos, permitindo o desenvolvimento de
dispositivos supercondutores menores, mais leves e, portanto, mais acessíveis. Além disso,
a descoberta de supercondutores multicomponentes—materiais descritos por mais de um
condensado—abriu caminho para novos e ricos fenômenos emergentes, de interesse tanto
fundamental quanto prático. Dado que o comportamento dos vórtices supercondutores sob
campos magnéticos ou elétricos aplicados pode tanto melhorar quanto prejudicar o desem-
penho de um dispositivo, compreender a dinâmica dos vórtices em diferentes condições
físicas é crucial para otimizar a funcionalidade dos dispositivos. Nesta tese, investigamos
as propriedades de equilíbrio e dinâmicas dos supercondutores convencionais de uma única
banda de emparelhamento s-wave, assim como de sistemas multicomponentes com sime-
tria de onda s e d, resolvendo numericamente as equações de Ginzburg-Landau depen-
dentes do tempo. Na primeira parte, exploramos supercondutores mesoscópicos, onde a
resposta do sistema a um campo magnético aplicado apresenta características únicas de-
vido à pequena razão volume-área, desafiando a classificação convencional dos materiais
em tipo I e tipo II. Em seguida, examinamos o processo de criação e aniquilação de
vórtice-antivórtice em um filme supercondutor que transporta corrente, demonstrando
que, em filmes suficientemente espessos, temos um novo estado dinâmico—”loop de vór-
tice fechado”—onde as linhas de vórtice e antivórtice formam um único loop antes da
aniquilação. Também propomos possíveis assinaturas experimentais desse estado. Por fim,
propomos um diodo supercondutor, onde um filme supercondutor central é flanqueado por
dois fios supercondutores que transportam correntes contínuas. Ao otimizar o perfil do
campo magnético criado por essas correntes, identificamos as condições para máxima efi-
ciência do diodo e mostramos que o dispositivo pode funcionar como um retificador de
meia onda. Na segunda parte, desenvolvemos um método semianalítico para avaliar a
estabilidade dos estados de fluxo em anéis supercondutores de duas bandas. Após validar
esse modelo com simulações numéricas, exploramos a possibilidade de estados de solitons.
Finalmente, estudamos a matéria de vórtices em bicamadas rotacionadas com simetria de
onda d, revelando a emergência de dois estados distintos de skyrmions em diferentes ângu-
los de rotação. Mostramos como o perfil do campo magnético desses estados pode servir
como um indício claro para a detecção de estados topológicos em tais heteroestruturas.



Abstract

Superconducting materials have sparked significant research activity in recent
years, particularly in the development of electronic devices. These devices are currently
used or are expected to soon be applied in various areas, such as highly precise and low-cost
field detectors, ultra-sensitive single-photon detectors, superconducting diodes, memory
and communication technologies, artificial neurons, and even quantum computing, where
they could serve as platforms for qubits. Interest in such devices has been renewed by the
discovery of superconductivity in atomically thin materials, enabling the design of smaller,
lighter, and more affordable superconducting devices. Moreover, the discovery of mul-
ticomponent superconductors—materials described by more than one condensate—has
opened the door to new, rich emergent phenomena with both fundamental and practical
significance. Given that the behavior of superconducting vortices under applied magnetic
or electric fields can either enhance or impair device performance, understanding vortex
dynamics under different conditions is crucial for optimizing device functionality. In this
thesis, we investigate the equilibrium and dynamic properties of conventional single-band
s-wave superconductors, as well as multicomponent systems with s- and d-wave pair-
ing, by numerically solving the time-dependent Ginzburg-Landau equations. In the first
part, we explore mesoscopic superconductors, where the system’s response to an applied
magnetic field exhibits unique features due to the small volume-to-area ratio, challeng-
ing the conventional classification into type I and type II materials. We then examine
the vortex-antivortex creation and annihilation process in a superconducting film carry-
ing a transport current, demonstrating that in sufficiently thick films, a new dynamical
state—termed the ”closed vortex loop”—emerges, where vortex and antivortex lines form
a single loop before annihilation. We also propose possible experimental signatures of this
state. Finally, we present a superconducting diode design, where a central superconduct-
ing film is flanked by two superconducting wires carrying DC currents. By optimizing
the magnetic field profile from these currents, we identify conditions for maximum diode
efficiency and show that the device can function as a half-wave rectifier. In the second
part, we develop a semi-analytical method to assess the stability of flux states in two-
band superconducting rings. After validating this model with numerical simulations, we
explore the possibility of soliton states. Lastly, we study vortex matter in twisted bilayers
with d-wave superconducting pairing, revealing the emergence of two distinct skyrmionic
states at different twist angles. We demonstrate how their magnetic field profiles could
serve as key indicators for detecting topological states in such heterostructures.



Abstract - Nederlandse versie

Supergeleidende materialen hebben de afgelopen jaren veel onderzoek aangewakkerd,
met name op het gebied van de ontwikkeling van elektronische apparaten. Deze apparaten
worden momenteel gebruikt of zullen naar verwachting binnenkort worden toegepast in
verschillende gebieden, zoals uiterst nauwkeurige en goedkope magnetische-veld-sensoren
(cfr. SQUID), ultra-gevoelige een-foton detectors, supergeleidende diodes, geheugen- en
communicatietechnologieën, kunstmatige neuronen en zelfs in quantumcomputing, waar
ze kunnen dienen als qubits. De interesse in dergelijke apparaten is nieuw leven inge-
blazen door de ontdekking van supergeleiding in atomair dunne materialen, wat het on-
twerp van kleinere, lichtere en goedkopere supergeleidende apparaten mogelijk maakt.
Bovendien heeft de ontdekking van multicomponent-supergeleiders—materialen die wor-
den beschreven door meer dan één condensaat—de deur geopend naar nieuwe verschi-
jnselen die zowel fundamenteel als praktisch van belang zijn. Aangezien het gedrag van
supergeleidende vortices onder aangelegde magnetische of elektrische velden de prestaties
van een apparaat kan verbeteren of juist belemmeren, is het essentieel om de dynamiek
van vortices onder verschillende omstandigheden te begrijpen om de functionaliteit van
apparaten te kunnen optimaliseren. In deze thesis, onderzoeken we de evenwichts- en
dynamische eigenschappen van conventionele enkelbandige s-golf supergeleiders, evenals
multicomponent-systemen met s- en d-golf paring, door de tijdsafhankelijke Ginzburg-
Landau-vergelijkingen numeriek op te lossen. In het eerste deel van de thesis, verkennen
we mesoscopische supergeleiders, waar de respons van het systeem op een aangelegd mag-
netisch veld unieke kenmerken vertoont vanwege de kleine volume-oppervlakteverhouding,
wat de conventionele indeling in type-I en type-II materialen uitdaagt. Vervolgens onder-
zoeken we het proces van vortex-antivortex creatie en annihilatie in een supergeleidende
film met transportstroom. We tonen aan dat in voldoende dikke films een nieuwe dynamis-
che toestand ontstaat, de zogenaamde ”gesloten vortexlus,” waarbij vortex- en antivor-
texlijnen samen een enkele lus vormen voordat ze annihileren. We stellen ook mogelijke
experimentele signalen voor om deze toestand te detecteren. Ten slotte presenteren we
een ontwerp voor een supergeleidende diode, waarbij een centrale supergeleidende film
wordt geflankeerd door twee supergeleidende draden met gelijkstroom (DC). Door het
magnetische veldprofiel van deze stromen te optimaliseren, identificeren we de voorwaar-
den voor maximale diode-efficiëntie en laten we zien dat het systeem kan functioneren
als een halfgolf-rectificator. In het tweede deel van de thesis, ontwikkelen we een semian-
alytische methode om de stabiliteit van fluxtoestanden in tweebandige supergeleidende
ringen te beoordelen. Na het valideren van dit model met numerieke simulaties, verken-
nen we de mogelijkheid van solitontoestanden. Ten slotte bestuderen we vortexmaterie
in gedraaide bilagen met d-golf supergeleidende paring, waarbij we de opkomst van twee
verschillende skyrmiontoestanden bij verschillende draaigraden onthullen. We tonen aan



hoe hun magnetische veldprofielen kunnen dienen als aanwijzingen voor het detecteren
van topologische toestanden in dergelijke heterostructuren.



List of Publications in the Period

Published papers discussed in this thesis:

1. Cadorim, L. R., Romaguera, A. R. D. C., De Oliveira, I. G., Gomes, R. R., Doria,
M. M., Sardella, E. Intermediate type-I superconductors in the mesoscopic scale.
Physical Review B, 103(1), 014504. (2021). The results of this paper are discussed
in Chapter 2 of this thesis.

2. Cadorim, L. R., De Toledo, L. V., Ortiz, W. A., Berger, J., Sardella, E. Closed
vortex state in three-dimensional mesoscopic superconducting films under an applied
transport current. Physical Review B, 107(9), 094515. (2023). The results of this
paper are discussed in Chapter 3 of this thesis.

3. Cadorim, L. R., Sardella, E., Silva, C. C. D. S. Harnessing the superconducting
diode effect through inhomogeneous magnetic fields. Physical Review Applied, 21(5),
054040. (2024). The results of this paper are discussed in Chapter 4 of this thesis.

4. Cadorim, L. R., Sardella, E., Dominguez, D., Berger, J. Stability limits of flux
states in two-band superconductor rings. Physical Review B, 110(14), 144513. (2024).
The results of this paper are discussed in Chapter 5 of this thesis.

5. Cadorim, L. R., Sardella, E., Milošević, M. V. Vortical versus skyrmionic states
in the topological phase of a twisted bilayer with d-wave superconducting pairing.
Physical Review B, 110(6), 064508. (2024). The results of this paper are discussed
in Chapter 6 of this thesis.

Published papers not discussed in this thesis:

1. Cadorim, L. R., de Oliveira Junior, A., Sardella, E. Ultra-fast kinematic vortices
in mesoscopic superconductors: the effect of the self-field. Scientific reports, 10(1),
18662. (2020).

2. de Toledo, L. V., Presotto, A., Cadorim, L. R., Filenga, D., Zadorosny, R.,
Sardella, E. Clusters of vortices induced by thermal gradient in mesoscopic super-
conductors. Physics Letters A, 406, 127449. (2021).

3. de Oliveira, I. G., Cadorim, L. R., Romaguera, A. R. D. C., Sardella, E., Gomes,
R. R., Doria, M. M. The spike state in type-I mesoscopic superconductor. Physics
Letters A, 406, 127457. (2021).

4. Cadorim, L. R., de Toledo, L. V., Sardella, E. Describing heat dissipation in the
resistive state of three-dimensional superconductors. Physica C: Superconductivity
and its Applications, 622, 1354531. (2024).



List of Figures

Figure 1 – Profile of the free energy density for T < Tc (solid line) and T < Tc

(dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 2 – Profile of the of order parameter (solid line) and local magnetic field

(dashed line) for κ << 1 (panel a)) and for κ >> 1 (panel b)). . . . . . 30
Figure 3 – Panel a) shows the color plot of the modulus of the order parameter

with a vortex at the center (blue means |ψ| = 0 and red |ψ| = 1).
Panel b) shows the modulus of the order parameter as a function of x
for y = 0, i.e., passing through the center of the vortex. . . . . . . . . . 34

Figure 4 – Color plot of the z component of the magnetic field profile of a super-
conductor with a vortex at its the center (blue means hz = 0 and red
the maximum value of the field). . . . . . . . . . . . . . . . . . . . . . 36

Figure 5 – Vector plot of the supercurrent of a superconductor with a vortex at
its center (panel a)). Color plot of the modulus of this supercurrent
(panel b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 6 – Color plot of the modulus of the order parameter in a region of a su-
perconducting system containing 12 vortices. A quasi-hexagonal struc-
ture is clearly seen. Distortion from perfect hexagonal lattice is due to
boundary condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 7 – Equilibrium order parameter as a function of temperature for the first
band (blue curve) and second band (red curve). Here, λ11 = 2.0, λ22 =
1.03, λ12 = 0.005 and n1 = 0.355. Curves were obtained through the
numerical solution of Eqs.1.130. . . . . . . . . . . . . . . . . . . . . . . 55

Figure 8 – Color plot of the order parameter of the first (left panel) and second
(right panel) bands for a superconductor carrying one vortex. Here,
D1/D2 = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 1 – The vorticity N of the system at the field which superconductivity is
first nucleated in descending field branch, Hc3, as a function of κ. The
vorticity is displayed for L = 16λ (blue curve) and L = 24λ (orange
curve). The insets show typical magnetization curves for κ < κc1 (left
inset) and κ > κc1 (right inset). In the insets, blue and red curves rep-
resent the ascending and descending field branches, respectively. The
black ellipse highlight the region where a vortex is trapped in the system. 63



Figure 2 – The value of κc2 as a function of L. The red circles are the critical
values obtained through the numerical simulations, the solid blue line
gives an adjusted curve for the obtained data and the dashed black line
represents the value of κc. Inset a) shows an example of a solely diamag-
netic response obtained for κc1 < κ < κc2, while inset b) exemplifies
the behavior for κc2 < κ < κc3. . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3 – The field H ′′
c as a function of κ for L = 16λ (blue curve), L = 24λ

(red curve) and L = 32λ (green curve). The left and right insets show
typical system behavior for κ lower and higher than κc3, respectively. . 65

Figure 4 – The upper panel shows the magnetization curve for L = 16λ and κ =

0.6. The lower panel show the Gibbs free energy of the same system,
as a function of the applied field. The inset in the lower panel shows
the region highlighted by the black ellipse. In both panels, we denote
the thermodynamic field Hc with a black circle. . . . . . . . . . . . . . 66

Figure 5 – Magnetization curves for L = 16λ, with κ ranging from 0.2 to 0.7. The
fields H ′

c, H ′′
c and Hc3 are denoted by the black triangle, square and

circle, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 6 – κ − L phase diagram for the three transitions discussed above. Each

color represent a different type of behavior presented by the system.
The limiting curves were obtained by the adjusting the critical values
of κ found in the simulations. . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 1 – Schematic view of the system under consideration: an infinitely long
superconducting sample of width ly and thickness lz; only one unit cell
of length lx is shown. The transport current is applied in the x direction.
The encircling lines illustrate the line fields of the self-field produced
by the current. Two defects are introduced at the border of the sample
(black spots), in order to facilitate nucleation of v-av pairs. . . . . . . . 72

Figure 2 – The magnetic field profile in the vertical plane x = 0 (parallel to the
yz plane): for better visualization purposes, the arrows are not in real
size; the rectangle inside is a cross section of the superconductor; this
picture is for κ = 1, ly = 8ξ, lz = 3ξ; the value of the current density is
Ja = 0.26JGL just before the critical current density Jc1 = 0.27JGL. The
vortex (antivortex) nucleates on the right-hand side (left hand-side) of
the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Figure 3 – Color maps of the superconducting Cooper-pair density, |ψ|, for κ = 1,
lz = 3ξ, and Ja = 0.27JGL throughout the plane x = 0: (a) a v-av
pair of curved vortices; on the left hand-side (right hand side) is the
antivortex (vortex); (b) a combination of a vortex and an antivortex
producing a closed vortex; (c) a closed vortex diminishing its radius;
(d) a closed vortex shrinking down at the center. The dark strips on
both sides are due to the defects. These pictures correspond to the
same region highlighted in Fig. 2. . . . . . . . . . . . . . . . . . . . . . 74

Figure 4 – The same as in Fig.3 for lz = 1.6ξ and Ja = 0.30JGL. . . . . . . . . . . 75
Figure 5 – The panels show four cuts of the current distribution of the closed

vortex throughout the vertical plane y = 0. The radius of the closed
vortex diminishes from (a) to (d). . . . . . . . . . . . . . . . . . . . . . 76

Figure 6 – (a) Voltage across the z direction as a function of the thickness of the
sample for three values of κ: the value of Ja for each case corresponds
to the first critical current density when the resistive state sets in. The
highlighted dots are the critical lz,c values for which the v-av pairs
combine to make a closed vortex. (b) The derivative of the voltage:
the dots separate the two regimes of straight to curved vortices; the
inflection points coincide with lz,c. . . . . . . . . . . . . . . . . . . . . 78

Figure 7 – IV (blue line) and IR (red line) characteristic curves, respectively, for
κ = 1 and lz = 3ξ. The Meissner state (full superconductivity) survives
up to Ja = Jc1 = 0.27JGL. Above this current density, the resistive state
sets in. The resistive state splits into two phases. In one of them the
vortex and the antivortex nucleate only at the defects on the border
of the superconductor. In the second phase, another set of v-av pairs
nucleates at the frontiers between unit cells. The second jump in the
IV characteristic is the signature of this crossover. The insets illustrate
this scenario through the modulus of the order parameter in the xy
plane (z = 0 plane). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 8 – Color maps of the superconducting Cooper-pair density, |ψ|, for κ = 1,
lz = 4ξ, and Ja = 0.26JGL throughout the plane x = 0: (a) an av
nucleates in the left edge of the sample and moves towards the opposite
side; (b) the ends of the av touch the y = ly/2 plane and form a half-
closed vortex; (c) a half-closed vortex diminishing its radius; (d) the
half-closed vortex shrinking down. . . . . . . . . . . . . . . . . . . . . 82



Figure 9 – The main panel presents the time average of the magnetic flux, Φ̄,
across the surfaces defined in Eq. 3.22; the black points correspond to
the beginning of the resistive state. The inset shows the magnetic flux,
Φ, as a function of time. The parameters used were κ = 1, lz = 4ξ, and
Ja = 0.26JGL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 10 – Difference between the average magnetic flux on both sides of the
sample through two vertical circuits positioned on the planes y =

±(ly/2 + ξ). The domain of the circuits is given by {−ξ ≤ x ≤
ξ, −lz/2 ≤ z ≤ Lz/2}. The value of Lz was chosen such that the area
of the circuit above the z = lz/2 surface is the same for all thicknesses
lz. The points just before the onset of the resistive state are highlighted
in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 1 – Schematic view of a superconducting film (green) subjected to asym-
metric field profiles Bz(y) induced by: (a) an asymmetrically lying ferro-
magnetic film (orange) with off-plane magnetization M; (b) the same as
(a) but with in-plane magnetization and symmetric arrangement of the
bilayer; and (c) currents applied onto lateral superconducting stripes
(blue). J1 and J2 can be adjusted to generate different field profiles.
Here, setting J2 = J1 = −J x̂ emulates Bz(y) similar to that induced
by the magnet in (b). In all cases, an alternating current Jac applied
parallel to x induces nonreciprocal vortex penetration and motion. . . 89

Figure 2 – Phase-diagram displaying the color plot of the output voltage VDC (in
units of V0 = h̄/2etGL) as a function of J1 and the amplitude of the
AC current (both in units of j0 = σV0/ξ(0)). We fix J2 = 0. . . . . . . 92

Figure 3 – The voltage signal as a function of time (solid blue line) for J1 = 0.26

and three current values, Ja = 2.20×10−3 (panel (a)), Ja = 2.45×10−3

(panel (b)) and Ja = 2.55 × 10−3 (panel (c)). In each panel, the red
dashed lines represent the voltage if the system were in the normal state. 93

Figure 4 – Color plot of the order parameter and local temperature difference
T − T0 at four different times for parameters corresponding to panel
(b) in Fig. 3. Each line of the figure corresponds to a black circle in the
positive current branch. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 5 – Color plot of the order parameter and local temperature difference
T − T0 at four different times for parameters corresponding to panel
(b) in Fig. 3. Each line of the figure corresponds to a black circle in the
negative current branch. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 6 – Phase-diagram displaying the color plot of the output voltage VDC (in
units of V0 = h̄/2etGL) as a function of J2 and the amplitude of the
AC current (both in units of j0 = σV0/ξ(0)). We fix J1 = 0.26. . . . . . 97



Figure 7 – The voltage signal as a function of time (solid blue line) for J1 =

J2 = 0.26 and three current values, Ja = 2.10 × 10−3 (panel (a)),
Ja = 2.40× 10−3 (panel (b)) and Ja = 2.80× 10−3 (panel (c)). In each
panel, the red dashed lines represent the voltage if the system was in
the normal state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 8 – Evolution of the order parameter (panels in the left column) and the
temperature increment T − T0 (panels in the right column) before the
destruction of the superconducting state for parameters of panel (b)

in Fig. 7. The white dashed line depicted in panel (a) delineates the
superconductor into two distinct halves, with the magnetic flux being
composed by vortices in the top region and antivortices in the bottom
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 9 – The voltage signal as a function of time (solid blue line) for a linear cur-
rent cycle with J1 = J2 = 0.26 and total sweep time τ = 106tGL). Red
dashed curve represents the normal state voltage. The arrows represent
the critical currents for the complete destruction of the superconduct-
ing state (dark blue) and the onset of vortex motion (orange) at each
current polarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 10 – Top panel shows |V (t)| as a function of |Ia(t)|. Blue and red curves
represent the half period with positive and negative Ja(t), respectively.
Solid and dashed lines represent the regions where |Ia(t)| is being in-
creased and decreased, respectively. Yellow and blue background marks
the current region of vortex and diode rectification, with green back-
ground depicting the region where they coexist. Bottom panel shows
R(t) as a function of |Ia(t)|, with the same definitions of the top panel
following. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 11 – Efficiencies of the superconducting, ϵNSD (blue circles), and vortex, ϵFFD

(red circles), diode effects as a function of the heat transfer coefficient
η. Here, we set τ = 106tGL. . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 12 – Efficiencies of the superconducting, ϵNSD (blue circles), and vortex, ϵFFD

(red circles), diode effects as a function of total sweep time τ . Here,
η = 2× 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 13 – Panel (a) shows the critical currents I+c (blue circles), I−c (red circles),
I+cv (blue dots) and I−cv (red dots) as a function of the current density
in the side stripes J . Panel (b) shows ϵNSD (blue circles) and ϵFFD (red
circles) as a function of J . Top x axis relates J with the value of the
inhomogeneous field at the sample edges He. . . . . . . . . . . . . . . . 106



Figure 14 – Panel (a) shows the diode efficiency as a function of the separation be-
tween the superconducting film and the lateral wires carrying a current
chosen as to induce He = 0.69Hc2(T ). Panel (b) presents the inhomo-
geneous field profile for different values of s/Ly (solid lines) and the
self-field profile of the central superconducting film (black dashed line).
All curves are normalized by the field at the edges. . . . . . . . . . . . 107

Figure 1 – The upper panel shows the values of a1 and a2 for ni = 0 as functions
of the applied flux. The lower panel presents det(M) as a function of
Φ; the black circle indicates the critical flux Φ = 1.087Φ0, above which
the state with winding number 0 is unstable. . . . . . . . . . . . . . . . 117

Figure 2 – Time evolution of the minimum values of the order parameters of a
state initially prepared with winding number 0, close to the limit of
stability, Φc = 1.087Φ0.R = 5ξ1,D1 = D2, T = 0.8Tc. Solid and dashed
lines represent the evolution for Φ = Φc+0.001Φ0 and Φ = Φc−0.001Φ0,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 3 – −∆Tc/Tc(0) as a function of the applied flux for a two-band ring with
R = 5ξ1 and D1/D2 = 1.00. . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 4 – Critical flux for the emergence of a phase slip as a function of tem-
perature for different values of η1. The black dashed curve shows the
single-band limit Φsb

c =
√

(1− T )R2 + 1/2/
√
3. . . . . . . . . . . . . . 120

Figure 5 – Critical flux above which the system becomes unstable as a function
of the ratio D1/D2. The blue (red) line presents the results obtained
from our method developed in Section 5.2 for a ring with radio R = 5ξ1

(R = 3ξ1). Black circles (squares) show the values of the critical flux
obtained numerically directly from the TDGL. . . . . . . . . . . . . . . 121

Figure 6 – Supercurrent carried by the first (blue circles) and second band (red
circles) in the Meissner state for an applied flux equals to the critical
flux of the given D1/D2 as a function of D1/D2, for R = 5ξ1 . . . . . . 122

Figure 7 – The main panel shows the critical flux for the formation of a phase-slip
(blue circles) and the upper critical field of the second band (red circles)
as functions of D1/D2. The inset presents the supercurrent carried by
the first (blue circles) and second (red circles) band in the Meissner
state, calculated at an applied flux equals to Φc(D1/D2), as functions
of D1/D2. In both curves R = 3ξ1. . . . . . . . . . . . . . . . . . . . . 123

Figure 8 – Critical flux for the transition ni = 1 → nf = 0 as a function of D1/D2. 124
Figure 9 – The critical flux as a function of temperature for R = 5ξ1 (panel a))

and R = 3ξ1 (panel b)). In each panel, we show the critical flux for
D1/D2 = 1.0, 0.5 and 0.1 (blue, red and yellow curves, respectively). . 125



Figure 10 – The spatial dependence of the magnitudes (solid lines) and phases
(dashed lines) of the order parameters correspondent to the first (blue)
and second (red) band in a soliton state. The left and the right ver-
tical axes give the magnitudes and the phases, respectively. In panel
a) R = 5ξ1, D1/D2 = 0.5 and Φ = 0.82Φ0. In panel b) R = 50ξ1,
D1/D2 = 0.1 and Φ = 3.27Φ0. In both panels, T = 0.8Tc. . . . . . . . . 127

Figure 11 – tγ as a function of (Φ − Φc) for D1/D2 = 0.25 (blue curve), 0.50 (red
curve) and 1.00 (yellow curve). Here R = 5ξ1 and T = 0.8Tc. . . . . . . 128

Figure 12 – Energy as a function of the applied flux for R = 5ξ1 and D1/D2 = 0.25.
The numbers n1 and n2 denotes the winding number of each order
parameter. Solid blue and dashed red lines depict the regimes where
the flux is being swept up and down in the range 0 ≤ Φ ≤ 1.2Φ0,
respectively. In the dashed yellow curve, the flux is decreased from
Φ = Φ0 down to Φ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 13 – Critical flux as a function of D1/D2 for three different values of λ12. In
all cases R = 5ξ1 and T = 0.8Tc. . . . . . . . . . . . . . . . . . . . . . . 130

Figure 1 – Phase difference between the d-wave components of the order param-
eters of two layers as a function of the twist angle θ. Blue and red
curves represent the phase difference for C = B/8 and C = B/5, re-
spectively, while A = B = 0.1. Dashed line shows the phase difference
given by the analytical expression arccos(B cos(2θ)/4C) from Ref. [1],
for C = B/8. The nontrivial values of the phase difference ( ̸= 0 or π)
indicate existence of a topological phase for a particular twist angle. . . 136

Figure 2 – Vortex configurations in the d-wave component of the order parame-
ter of the unrotated layer (first column) and the rotated layer (second
column), for the s-wave component of the order parameter of the un-
rotated layer (third column) and the rotated layer (fourth column),
and the magnetic response of the system (fifth column), for three se-
lected twist angles between the layers. The applied magnetic field was
H = 0.0368Hc2, corresponding to the magnetic flux of 24Φ0 through
the shown area of the sample. . . . . . . . . . . . . . . . . . . . . . . . 138



Figure 3 – Zoom on the composite (phase shifted, ∆φ = π/2, left column) and
skyrmionic (minimum energy, right column) vortex states for a bilayer
twisted with θ = 45◦, in applied magnetic field H = 0.12Hc2 (simula-
tion region 36 × 36ξ2). Panels a) and b) present the vortex positions
in the first and the second layer (blue and red circles, respectively).
Panels c) and d) show the sine of the phase difference between the
condensates. Panels e) and f) plot the Josephson current profile, with
the average Josephson current displayed in each panel. Panels e) and
f) show the Josephson current profile along the black dashed lines in
panels g) and h), respectively. Red dashed line in panel h) show the
sine of phase difference between the layers along the same line as the
current shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 4 – Vortex configurations for twist angle θ = 36◦ ≳ θi at three values of
applied magnetic field. Each row corresponds to a different system size
(lateral sizes are shown), for same magnetic flux of 24Φ0. From left
to right, the columns respectively show the magnitude of the d-wave
component of the order parameter for unrotated and rotated layers, the
cosine and sine of the phase difference between the order parameters
in two layers, and the magnetic field distribution across the system. . . 141

Figure 5 – Vortex configurations for θ = 45◦, deep inside the topological phase,
for three values of applied magnetic field. Each row corresponds to a
different system size (lateral sizes are shown), for same magnetic flux of
24Φ0. From left to right, the columns respectively show the magnitude
of the d-wave component of the order parameter for unrotated and
rotated layers, the cosine and sine of the phase difference between the
order parameters in two layers, and the magnetic field distribution
across the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 6 – Energy of the homogeneous system (without vortices) as a function
of the phase difference between the d-wave components of the order
parameter in two twisted layers. The blue, yellow and red curves show
the energy for the twist angle θ = 36◦, θ = 42◦ and θ = 45◦, respectively.143

Figure 7 – Evolution of the vortex configuration when adiabatically decreasing
the twist angle from θ = 45◦ to 36◦. From left to right, the columns
respectively show the magnitude of the d-wave component of the order
parameter for unrotated and rotated layers, the cosine and sine of the
phase difference between the order parameters in two layers, and the
magnetic field distribution across the system. . . . . . . . . . . . . . . 144



Figure 8 – Evolution of the vortex configuration when adiabatically increasing the
twist angle from θ = 36◦ to 45◦. From left to right, the columns re-
spectively show the magnitude of the d-wave component of the order
parameter for unrotated and rotated layers, the cosine and sine of the
phase difference between the order parameters in two layers, and the
magnetic field distribution across the system. . . . . . . . . . . . . . . 145

Figure 9 – Energy as a function of the twist angle θ. The blue and red lines show
the energy curves for the twist angle being decreased from θ = 45◦ to
36◦ and increased from 36◦ to 45◦, respectively. . . . . . . . . . . . . . 146

Figure 1 – Schematic view of the points where each quantity is computed in the
simulation grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 2 – Schematic view of the three-dimensional version of the simulation grid
introduced in Fig. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1 Theories of Superconductivity . . . . . . . . . . . . . . . . . . . . . . 24
1.1.1 London Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.2 Ginzburg-Landau Theory of Superconductivity . . . . . . . . . . . . . . . . 26
1.1.2.1 The Ginzburg-Landau Equations . . . . . . . . . . . . . . . . . . . . . . . . 26
1.1.2.2 Energy of a Superconductor/Normal Metal Surface . . . . . . . . . . . . . . . 30
1.1.2.3 Small ψ Limit of the Ginzburg-Landau Equation . . . . . . . . . . . . . . . . 32
1.1.2.4 The Two Types of Superconductors . . . . . . . . . . . . . . . . . . . . . . 34
1.1.2.5 Vortices in a Type II Superconductor . . . . . . . . . . . . . . . . . . . . . . 36
1.1.2.6 Flux Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.1.3 BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.1.3.1 Cooper Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.1.3.2 BCS Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.1.4 Microscopic Derivation of the Ginzburg-Landau Equations . . . . . . . . . 49
1.1.5 Superconductors Described by More than One Condensate . . . . . . . . . 54
1.1.6 d-wave Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2 THE INTERMEDIATE TYPE I SUPERCONDUCTOR . . . . . . . 61
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2 Theoretical Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 CLOSED VORTEX IN A SUPERCONDUCTING FILM . . . . . . . 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Parameters and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Field Profile, Closed Vortex, and Current Distribution . . . . . . . . . . . . 80
3.3.3 Straight to Curved Vortex Crossover, and (IV,IR) Characteristics . . . . . . 81
3.3.4 Single Defect (Half-Closed Vortex) . . . . . . . . . . . . . . . . . . . . . . 83
3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 HARNESSING THE SUPERCONDUCTING DIODE EFFECT THROUGH
INHOMOGENEOUS MAGNETIC FIELDS . . . . . . . . . . . . . . 87



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Theoretical Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Fully Positive Asymmetric Flux Profiles (J1 ̸= 0, J2 = 0) . . . . . . . . . . 91
4.3.2 Antisymmetric Flux Profiles (J1 = J2) . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Hot Spot Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.4 Diode Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.5 Optimizing Diode Efficiencies: The Role of Heat Removal and Sweep Rate . 102
4.3.6 Optimizing Diode Efficiencies: The Role of the Inhomogeneous Field Am-

plitude and Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 STABILITY LIMITS OF FLUX STATES IN TWO-BAND SUPER-
CONDUCTING RINGS . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Theoretical Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 The Linear Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 The Critical Flux Dependence on D1/D2 . . . . . . . . . . . . . . . . . . 121
5.3.2 Critical Flux Dependence on the Bath Temperature . . . . . . . . . . . . . 124
5.3.3 The Phase Soliton State . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 VORTICAL AND SKYRMIONIC STATES IN A TWISTED-BILAYER
WITH d-WAVE SUPERCONDUCTING PAIRING . . . . . . . . . . 132

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Theoretical Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.1 Vortex Matter at the Onset of the Topological Phase . . . . . . . . . . . . 143
6.3.2 Vortex Matter Deep Inside the Topological Phase . . . . . . . . . . . . . . 146
6.3.3 Transitions Between the Topological Vortex Matter with the Interlayer Twist 148
6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . 151
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

APPENDIX A – NUMERICAL METHODS FOR THE GINZBURG-
LANDAU EQUATIONS . . . . . . . . . . . . . . . 171

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



A.2 Infinite Superconductor with Rectangular Cross Section under an
Applied Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.3 Superconducting Film under an Applied Magnetic Field . . . . . . . 178
A.4 Superconductor Periodic in One Direction . . . . . . . . . . . . . . . 181
A.5 Superconductor Periodic in Two Directions . . . . . . . . . . . . . . 181
A.6 Superconductor under an Applied Current . . . . . . . . . . . . . . . 183
A.7 Superconductor under an Applied Current Described by the Gener-

alized Time Dependent Ginzburg-Landau Equation . . . . . . . . . . 186
A.8 dx2−y2 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



22

1 Introduction

Superconductivity was first discovered by Heike Kamerlingh Onnes, a Dutch physi-
cist, in 1911. At that time, Onnes was studying the behavior of materials at very low
temperatures [2], particularly when using liquefied helium to cool metals. In a landmark
experiment, Onnes observed that the electrical resistance of mercury dropped abruptly to
zero when it cooled below 4.2 K, a phenomenon that became known as superconductivity
[3]. This discovery won Onnes the Nobel Prize in Physics in 1913, and it opened a new
field in low-temperature physics.

For the next few decades, the primary focus in superconductivity research was
the identification of other materials that exhibited this property and the development of
theories to explain it. Many metals and alloys were found to become superconducting at
low temperatures, but the theoretical understanding of this phenomenon was elusive.

In the early 1930s, Walther Meissner and Robert Ochsenfeld made a significant dis-
covery when they demonstrated the Meissner effect, which showed that superconductors
could expel magnetic fields from their interior when transitioning into the superconduct-
ing state [4, 5]. This discovery established that superconductivity was not just about zero
electrical resistance but also involved unique magnetic properties, paving the way to the
development of the first phenomenological theories of superconductivity (discussed in de-
tail in the next section). The most successful of them was the Ginzburg-Landau theory,
proposed in 1950 by the Russian physicists Lev Landau and Vitaly Ginzburg [6]. Based on
the Landau theory of second order phase transitions, the theory provided a mathematical
framework for describing the macroscopic behavior of superconductors without explaining
the microscopic mechanism.

The fully microscopic description of superconductivity would only come after the
discovery of the so-called isotope effect. Two independent research groups, one led by
Emil Maxwell and another by Cochran and Reynolds, found that the critical temperature
(Tc) of certain superconductors varied depending on the isotope of the metal used. This
isotope effect suggested that superconductivity was related to lattice vibrations (phonons),
linking it to quantum mechanics. Based on this, in 1957, John Bardeen, Leon Cooper,
and Robert Schrieffer published their seminal BCS theory, where it is proposed that at
low temperatures, electrons in a superconductor form pairs (Cooper pairs) because of
an attractive interaction mediated by phonons (vibrations in the crystal lattice). These
Cooper pairs move through the material without scattering, leading to zero resistance. The
BCS theory was a major success, explaining not only the phenomenon of superconductivity
but also predicting the critical temperature of many materials. The trio received the
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Nobel Prize in Physics in 1972 for their work. This theory became the cornerstone of
understanding superconductors and guided research for the next few decades [7, 8].

For several decades after the development of BCS theory, progress in the field of
superconductivity was relatively slow. By the mid-20th century, superconductors were
known to exist only at very low temperatures, typically below 30 Kelvin, which severely
limited their practical applications. Liquid helium, used for cooling, was expensive and
difficult to handle, restricting the widespread use of superconducting technologies. This
changed dramatically in 1986 when two IBM researchers, Johannes Georg Bednorz and
Karl Alexander Müller, discovered a new class of superconducting materials: cuprates
(compounds containing copper and oxygen). They found that lanthanum barium copper
oxide became superconducting at 35 K, far above the previously established temperature
limits for superconductors [9].

This breakthrough led to a surge of research, and in 1987, another team of re-
searchers, led by Paul Ching Wu Chu at the University of Houston, discovered a new
material, yttrium barium copper oxide), which exhibited superconductivity at an even
higher temperature of 92 K [10]. This discovery was critical because it brought supercon-
ductivity above the temperature of liquid nitrogen), a much cheaper and easier coolant
than liquid helium. These materials were called high-temperature superconductors.

The discovery of high-Tc superconductors was revolutionary. Not only did it ex-
pand the theoretical understanding of superconductivity, it also opened the door to
new practical applications, such as magnetic levitation (maglev) trains, medical imag-
ing technologies (MRI), and improvements in power transmission. Bednorz and Müller
were awarded the Nobel Prize in Physics in 1987 for their pioneering work. However, the
exact mechanism that allowed these cuprate materials to become superconducting at such
high temperatures was not explained by BCS theory. This prompted intense theoretical
and experimental efforts to uncover the nature of high-Tc superconductors, leading to the
development of new models and the exploration of other types of materials that exhibited
unconventional forms of superconductivity. These materials often did not fit the conven-
tional BCS framework and included a wide variety of compounds with unique properties
[11].

As one example of such materials we can cit the iron-based superconductors. First
reported in 2008, these materials exhibited superconductivity at temperatures as high as
56 Kelvin, sparking excitement because they provided a second family of high-temperature
superconductors, alongside the cuprates. However, iron-based superconductors involved
a mechanism different from that of cuprates, and researchers are still working to fully
understand the physics behind them [12]. Non-conventional superconductivity also exists
outside the family of high-temperature, for example, heavy fermion superconductors are
materials where electron-electron interactions are particularly strong [13]. These mate-
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rials exhibit superconductivity at very low temperatures, and their unusual electronic
properties, including large effective electron masses, challenge traditional superconduct-
ing theories. They often exhibit multiple competing quantum states, such as magnetism
and superconductivity, providing valuable insight into the interplay between these forces.

More recently, materials known as topological superconductors have garnered at-
tention. These are materials that host Majorana fermions, particles that could be their
own antiparticles, potentially useful for quantum computing [14, 15]. Superconductors
such as Sr2RuO4 and engineered superconducting heterostructures are being studied for
their exotic topological properties and potential applications in robust quantum infor-
mation storage. One of the most recent breakthroughs in superconductivity came in the
2010s when researchers began exploring superhydrides (such as H3S) under extremely
high pressures. In 2015, it was discovered that hydrogen sulfide (H2S), when subjected to
pressures of 150 gigapascals, exhibited superconductivity at 203 K, making it the high-
est Tc superconductor at that time. Later, in 2020, a compound known as carbonaceous
sulfur hydride broke this record with superconductivity at 287 K, under even higher pres-
sures. While these materials require extreme conditions, they offer tantalizing hints that
room-temperature superconductivity might one day be possible [16, 17].

1.1 Theories of Superconductivity

1.1.1 London Theory
The first theory to describe both the zero electrical resistance and the perfect

diamagnetism of superconductors was the London theory. To derive the equation of the
London theory that governs the behavior of the magnetic field inside a superconductor, we
start by separating the electrons into two components: the normal and superconducting
parts. In this case, the total energy of the system can be written as the sum of three
contributions:

F = Fn + Fkin + Fmag , (1.1)

where Fn comes from the normal contribution, Fkin is the kinetic energy associated with
the superelectrons and Fmag is the energy stored in the magnetic field.

With the velocity of the superelectrons given by v = j/ne, with e being the electric
charge of the electron and n the density of superelectrons and recalling that from Ampère’s
law we have j = (c/4π)∇× h, the kinetic energy can be written as:

With the velocity of the superelectrons given by v = j/ne, where e is the electric
charge of the electron and n is the density of superelectrons, and recalling that from
Ampère’s law we have j = (c/4π)∇× h, the kinetic energy can be written as:
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Fkin =
1

8π

∫
mc2

4πne2
|∇× h(r)|2 d3r , (1.2)

while the local magnetic field term takes the usual form:

Fmag =
1

8π

∫
h2(r)d3r . (1.3)

With Eqs. 1.2 and 1.3, we minimize Eq. 1.1 to obtain:

∇× (∇× h) + 1

λ2L
h = 0 , (1.4)

where we have defined the London penetration length λ2L = mc2/(4πne2). Eq. 1.4 is known
as the second London equation.

To gain insight into what this equation tells us about the behavior of the local mag-
netic field inside a superconductor, suppose we have a superconductor/insulator interface
at x = 0, with a parallel applied magnetic field h = H ẑ. Making use of the Maxwell
equation ∇ · h = 0, Eq. 1.4 can be written as:

∇2h − 1

λ2L
h = 0 , (1.5)

which, in this case, has the solution:

h = He−x/λL ẑ . (1.6)

As we can see, Eq. 1.6 states that the applied magnetic field penetrates the su-
perconductor only to a length λL, going to zero in the bulk of the superconductor, thus
accounting for the perfect diamagnetism observed in superconductors.

Now, let us see how the London theory accounts for the zero electron resistance in
the superconducting state. For this, we start from Drude’s model for the electron motion
in a metal:

m

(
∂v
∂t

+
v
τ

)
= eE , (1.7)

where τ denotes the mean free time between two collisions of the electron with an ion.

For superconducting electron, τ goes to infinity and, bearing in mind that v = j/ne,
we have what it is known as the first London equation:

∂j
∂t

=
ne2

m
E . (1.8)
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As can be seen, this equation describes the perfect conductivity of the supercon-
ducting state, since it allows for the presence of a constant and finite current even in the
absence of an applied electric field.

The second London equation, Eq. 1.4, can be obtained from Eq. 1.7. To see this,
we take the curl and the time derivative of Ampère’s law to obtain:

∇×
(
∇× ∂h

∂t

)
=

4π

c
∇× ∂j

∂t
. (1.9)

With the use of Eq. 1.8 and the Faraday’s law of induction, Eq. 1.9 can be written
as:

∇×
(
∇× ∂h

∂t

)
+

1

λ2L

∂h
∂t

= 0 , (1.10)

which, as can be easily seen, describes the response of a perfect conductor to the appli-
cation of a time-varying magnetic field. To correctly describe the observed properties of
the superconducting state, we must drop the time derivatives in Eq. 1.9, recovering the
second London equation detailed above.

1.1.2 Ginzburg-Landau Theory of Superconductivity
1.1.2.1 The Ginzburg-Landau Equations

The Ginzburg-Landau free energy density to describe the superconducting state
is given by:

F = α(T )|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣∣(−ih̄∇− e∗

c
A
)
ψ

∣∣∣∣2 + 1

8π
|∇× A|2 , (1.11)

where α(T ) and β are phenomenological parameters; m∗ is the effective mass; ψ is the
superconducting order parameter and A is the vector potential.

The first two terms on the right-hand side of Eq. 1.11 represent the condensation
energy of the superconducting electron pairs. The third term comes from the contribution
of superconducting currents present in the system, or in other words, the kinetic energy
of the superconductor. Lastly, the final term takes into account the magnetic energy of
the system.

To describe the transition from normal to superconducting state, the phenomeno-
logical constant β is taken to be always positive, while the temperature dependence of
the constant α(T ) is given as α(T ) = −α0(Tc − T ), where Tc is the critical temperature
of the superconductor and α0 is a positive phenomenological constant.



Chapter 1. Introduction 27

Fig. 1 shows the profile of the free energy density of a homogeneous superconductor
in the absence of external fields. In this case, the only nonzero terms come from the
condensation energy. The dashed line represents the case of a temperature higher than
the critical temperature. Since in this case both α(T ) and β are positive, Eq. 1.11 shows
that the minimum energy state occurs for |ψ| = 0, i.e., there is no superconductivity and
the system resides at the normal state. On the other hand, for T < Tc, α(T ) is negative
and the minimum energy now occurs for a finite |ψ|, namely |ψ| = ns =

√
α0(Tc − T )/β.

To understand how the theory explains the transition to the normal state under
the influence of an applied magnetic field, let us consider a boundless superconductor
subjected to a homogeneous magnetic field of magnitude H. From Eq. 1.11 and the
conclusion of the previous paragraph, it is clear that the system transitions to the normal
state when the field reaches a critical value, which is given by:

H2
c

8π
=
α2(T )

2β
=
α2
0(Tc − T )2

2β
, (1.12)

where Hc is known as the thermodynamic critical field.

In a more general scenario, for finite superconductors exposed to external fields,
the superconducting system is characterized by an order parameter that minimizes the
Ginzburg-Landau free energy. In this context, the stationary state is governed by the
following equations:

δF

δψ∗ = 0 ,

δF

δA = 0 . (1.13)

By substituting Eq.1.11 into Eq.1.13, we derive the following two coupled partial
differential equations for the order parameter and the vector potential:

α(T )ψ + β|ψ|2ψ +
1

2m∗

(
−ih̄∇− e∗

c
A
)2

ψ = 0

c

4π
∇× h = Js , (1.14)

where h = ∇× A and Js is the superconducting current density flowing in the material,
which is given by:

Js =
e∗

m∗Re
[
ψ∗
(
−ih̄∇− e∗

c
A
)
ψ

]
. (1.15)
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Figure 1 – Profile of the free energy density for T < Tc (solid line) and T < Tc (dashed
line).

Eqs. 1.14 are the famous Ginzburg-Landau equations of superconductivity. To
solve for ψ and A in a finite system, one must specify suitable boundary conditions. The
most common ones are the following:

n̂ ·
(
−ih̄∇− e∗

c
A
)

= 0 , (1.16)

which ensure that the superconducting current does not leave the system, while the local
field is assumed to match the externally applied field Ha at points far from the supercon-
ductor, i.e., ∇× A = Ha.

To gain insight into the workings of the model, let us consider the example of a
superconductor/normal metal interface in the absence of any fields or currents. In this
situation, the order parameter can be assumed to be real without any loss of generality,
and the first Ginzburg-Landau equation simplifies to an ordinary differential equation,
written as:

α(T )ψ + βψ3 − h̄2

2m∗
d2ψ

dx2
= 0 . (1.17)

Let us assume that the interface is located at x = 0, with the semi-infinite super-
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conductor on the positive x axis. If we now take the order parameter as ψ̃ = ψ/
√
α(T )/β,

such that ψ̃ = 0 at x = 0 and ψ̃ = 1 for x→ ∞, Eq. 1.17 can be rewritten as:

−ψ + ψ3 − h̄2

2m∗|α(T )|
d2ψ

dx2
= 0 , (1.18)

where we have dropped the tildes.

Multiplying each side of Eq. 1.18 by dψ
dx

and defining ξ2(T ) = h̄2

2m∗|α(T )| , we have:

d

dx

(
−ξ

2(T )

2

(
dψ

dx

)2

− 1

2
ψ2 +

1

4
ψ4

)
= 0 . (1.19)

The solution of Eq. 1.19 which obeys our boundary conditions is:

ψ = tanh
(

x√
2ξ(T )

)
. (1.20)

As seen from Eq. 1.20, ξ(T ) represents the distance over which the order parameter
recovers its bulk value. ξ(T ) is known as the Ginzburg-Landau coherence length.

This illustrates how the Ginzburg-Landau theory describes the variation of the
order parameter in a simple case. Similarly, we can analyze the behavior of the magnetic
field profile. Consider again a superconductor/insulator interface, with a small magnetic
field applied parallel to the surface. For a sufficiently small field, we can assume the order
parameter is constant and equal to its bulk value, ψ = |ψ(T )|. With this, the supercurrent
in Eq. 1.15 can be written as:

Js = − e∗2

m∗c
|ψ(T )|2A . (1.21)

Taking the curl on both sides of Eq. 1.21 and using the Ampère law in Eq. 1.14,
we have:

c

4π
∇× (∇× h) = − e∗2

m∗c
|ψ(T )|2h . (1.22)

Remembering the London theory, Eq. 1.22 can be simplified as:

∇2h − 1

λ2
h = 0 , (1.23)

with the penetration depth of Ginzburg-Landau theory given by
λ2(T ) = m∗c2/(4π|ψ(T )|2e∗2). The ratio κ = λ(T )/ξ(T ) is called the Ginzburg-Landau
parameter and will have a significant role in our subsequent analysis.



Chapter 1. Introduction 30

a) b)

Figure 2 – Profile of the of order parameter (solid line) and local magnetic field (dashed
line) for κ << 1 (panel a)) and for κ >> 1 (panel b)).

1.1.2.2 Energy of a Superconductor/Normal Metal Surface

Next, we calculate the energy of a domain wall separating a superconductor from a
normal metal. To do this, we first rewrite the Ginzburg-Landau free energy of the system
in dimensionless units. In these units, lengths are scaled by the penetration length λ, the
magnetic field is given in units of

√
2Hc, with Hc being the thermodynamic critical field,

the order parameter in units of
√
α0(Tc − T )/β and the free energy in units of H2

c /4π.
With this, we can write Eq. 1.11 as:

Fs = Fn0 − |ψ|2 + 1

2
|ψ|4 +

∣∣∣∣(− i
κ
∇− A

)
ψ

∣∣∣∣2 + |∇× A|2 , (1.24)

with the Ginzburg-Landau Eqs.1.14 being given by:

−ψ + |ψ|2ψ +

(
− i
κ
∇− A

)2

ψ = 0

∇× h = Js , (1.25)

where the new supercurrent density is:

Js = Re
[
ψ∗
(
− i
κ
∇− A

)
ψ

]
. (1.26)

In Eq. 1.24, to facilitate our following analysis, we have explicitly included the free
energy of the normal state at zero applied magnetic field Fn0, which was arbitrarily taken
as zero in the previous calculations. It is evident from our previous definition that the free
energies of the superconducting and normal state at zero field relate as Fn0−Fs0 = H2

c /8π.
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Let us begin by assuming the domain wall is located at x = 0 and spans the entire
yz plane. This reduces the problem to one dimension, allowing us to take h = h(x)ẑ and
A = A(x)ŷ. h and ψ must obey the following boundary conditions:

ψ(x) = 0 h(x) = 1/
√
2 forx→ −∞

ψ(x) = 1 h(x) = 0 forx→ ∞ . (1.27)

Since we are working with a fixed applied field, it is more convenient to use the
Gibbs free energy density G = G − hH/4π. For x → −∞ the system is at the normal
state and the Gibbs free energy becomes:

Gn = Fn0 +
H2
c

8π
− H2

c

4π
, (1.28)

where we have used the boundary condition that ψ(x) = 0 and h(x) = 0 as x→ −∞.

As we can see, the Gibbs free energy density deep in the normal state is equal to
the the superconducting free energy at zero field Fs0. Since for x→ ∞ h goes to zero, we
have that the Gibbs free energy of the system asymptotically approaches the same value
on both sides of the domain wall. The surface energy (per unit area) σns is then defined
as the difference between this value and the actual value calculated in the system:

σns =

∫ ∞

−∞

(
Fs −

hHc

4π
− Fs0

)
dx . (1.29)

Using Eq. 1.24 and the definition of the thermodynamic critical field, we have :

σns =

∫ ∞

−∞

(
−|ψ|2 + 1

2
|ψ|4 +

∣∣∣∣(− i
κ
∇− A

)
ψ

∣∣∣∣2 + (h− 1/
√
2)2

)
dx . (1.30)

Multiplying both sides of the first GL equation by ψ∗ and integrating over all
space, Eq. 1.30 can be simplified as:

σns =

∫ ∞

−∞

(
−1

2
|ψ|4 +

[
h− 1/

√
2
]2)

dx . (1.31)

For certain cases, it is possible to exactly obtain σns. As the calculations are
intricate, we will only reproduce the results obtained in the literature. For κ << 1 the
surface energy is given by σns = 4

√
2/3κ, whereas for κ >> 1, σns = −8(

√
2− 1)/3.

To understand these results, we show the profile of the order parameter and of the
local magnetic field for both κ limits in Fig. 2. As we can see, for κ << 1, there is a region
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of the superconductor where the energy increases due to the expulsion of the magnetic
field, while the superconducting state is not fully recovered, thus not contributing with
the condensation energy. On the other hand, for κ >> 1, not only superconductivity
recovers in a shorter space, but the magnetic field also penetrates the system over a much
larger length.

1.1.2.3 Small ψ Limit of the Ginzburg-Landau Equation

If we assume that the order parameter is very small, we can disregard the cubic
term in Eq. 1.14 and assume that the local magnetic field is equal to the applied field, since
the supercurrent is negligible. The first Ginzburg-Landau equation can then be written
as:

α(T )ψ +
1

2m∗

(
−ih̄∇− e∗

c
A
)2

ψ = 0 . (1.32)

Using the definition of the magnetic flux quantum Φ0 = hc/2e, we have:

α(T )ψ +
h̄2

2m∗

(
−i∇− 2π

Φ0

A
)2

ψ = 0 , (1.33)

Let us now assume we have an infinite superconductor with an external magnetic
field h = H ẑ. Without loss of generality, we take the vector potential to be A = Hxŷ.
Eq. 1.33 then becomes:

α(T )ψ +
h̄2

2m∗

(
−∇2 +

4πiHx
Φ0

∂

∂y
+

(
2πH

Φ0

)2

x2

)2

ψ = 0 . (1.34)

Our aim is to find the highest value of H at which the order parameter is finite, i.e.,
at which superconductivity is not completely destroyed. Note that this is not the same as
the thermodynamic critical field Hc, since Hc is the highest possible value of external field
that the superconducting state can completely expel without being destroyed, whereas in
our new scenario the field penetrates the system.

Given the form of the potential observed in Eq. 1.34, we choose an ansatz to
facilitate the solving of the problem:

ψ = eikyyekzzf(x) , (1.35)

after substituting this on Eq. 1.34 we get:
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(
α(T ) +

h̄2k2z
2m∗

)
f(x)− h̄2

2m∗
d2f(x)

dx2
+

h̄2

2m∗

(
k2y −

4πH

Φ0

kyx+

(
2πH

Φ0

)2

x2

)
f(x) = 0 ,

(1.36)
we can further simplify Eq. 1.36 to:

− h̄2

2m∗
d2f(x)

dx2
+
m∗

2

(
2πh̄H

m∗Φ0

)2(
x− Φ0ky

2πH

)2

f(x) = −
(
α(T ) +

h̄2k2z
2m∗

)
f(x) . (1.37)

As can be seen, Eq. 1.37 is just the Schrödinger equation for a harmonic oscillator
with a minimum energy at x0 = Φ0ky/2πH, frequency ω = 2πh̄H/m∗Φ0 and energy
E = −α(T ) − h̄2k2z/2m

∗. The solution of this problem is widely known, with the energy
being equal to:

E =

(
n+

1

2

)
h̄ω . (1.38)

To obtain the highest possible value of H we see that we must set n = 0 and
ky = 0 in Eq. 1.38, which gives:

H =
m∗|α(T )|Φ0

4πh̄2
=

Φ0

2πξ(T )2
. (1.39)

The field H is known as the upper critical field Hc2.

It is interesting to relate the upper critical field to the thermodynamic critical field
Hc. To do so, we point out that, from the definition of the penetration length, the ratio
|α(T )|/β can be expressed as:

|α(T )|
β

= |ϕ0|2 =
e∗2

m∗c2
H2
cλ

2(T ) . (1.40)

If we Eq. 1.40 in the definition of the coherence length, it is easy to see that:

ξ(T ) =
Φ0

2
√
2π

1

Hc(T )λ(T )

κ =
2
√
2πHc(T )λ

2(T )

Φ0

. (1.41)

Finally, using Eq. 1.41 on the expression for the upper critical field, we have:

Hc2(T ) =
4πH2

c (T )λ
2(T )

Φ0

=
√
2κHc(T ) . (1.42)
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a) b)

Figure 3 – Panel a) shows the color plot of the modulus of the order parameter with a
vortex at the center (blue means |ψ| = 0 and red |ψ| = 1). Panel b) shows
the modulus of the order parameter as a function of x for y = 0, i.e., passing
through the center of the vortex.

1.1.2.4 The Two Types of Superconductors

As detailed in the previous subsections, the Ginzburg-Landau parameter κ = 1/
√
2

appears as a limiting value in two situations. In the first of them, κ = 1/
√
2 is the exact

value at which the surface energy of a superconductor/normal domain wall is zero. In the
second situation, we saw that, at κ = 1/

√
2, the upper critical field Hc2 is equal to the

thermodynamic critical field Hc.

These two cases are not coincidental and highlight the existence of two distinct
groups of superconducting materials found in nature. The first group, known as type I
superconductors, remains in the Meissner state as the applied magnetic field increases, up
to the thermodynamic critical field. Above Hc, superconductivity is completely destroyed
and the system goes to the normal state.

On the other hand, for materials with κ > 1/
√
2, known as type II superconductors,

the evolution of the superconducting state as the external field increases is remarkably
different. In this case, above a certain critical field, the system leaves the Meissner state
but does not transition directly to the normal state. Instead, the superconductor enters
a phase known as the mixed state, where magnetic flux penetrates the interior of the
superconductor through the formation of normal regions.

Since the surface energy of a superconductor/normal interface is negative for
κ > 1/

√
2, it becomes energetically favorable for the system to maximize the area of

such interfaces, causing the normal regions to divide into small circular structures. To
gain insight into the flux carried by these entities, we can take the expression for the
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supercurrent in Eq. 1.15 and integrate it over a closed path surrounding one of these
objects:

∮
Js · ds =

∮
e∗

m∗Re
[
ψ∗
(
−ih̄∇− e∗

c
A
)
ψ

]
· dr . (1.43)

Far from the normal region and deep in the superconducting state, we expect the
supercurrent to be zero. Furthermore, it is reasonable to take the order parameter with
a constant modulus and of the form ψ = |ψ0|eiθ, where θ is a phase factor. With this,
Eq. 1.43 becomes:

∮ (
h̄∇θ − e∗

c
A
)
· dr = 0 , (1.44)

noticing the path integral of A is just the flux Φ enclosed by this path, we have:

Φ =
Φ0

2π

∮
∇θ · dr . (1.45)

Given that the superconductor order parameter must be a single-valued function,
one can see that the path integral in Eq. 1.45 must be an integer multiple of 2π. Thus,
we have that the flux carried by the normal region is given by:

Φ = nΦ0 , (1.46)

this is, a multiple of the magnetic flux quantum. As we will see later, it is energetically
favorable for the system to have n = 1. It is important to note that the flux quantization
is valid for both type I and type II superconductors.

This normal region with a phase winding of 2π around it is known as a supercon-
ducting vortex. The discontinuity in phase signals a circular flow of supercurrent around
it, thus the name vortex. In Fig. 3, panel a), we show the color plot of the order parameter
with a vortex present in its center. As described earlier, the vortex has a circular shape,
with the order parameter recovering in a radius ξ from its center. This region is known
as the core of the vortex. Panel b) helps the visualization of the order parameter profile.
As we can see, ψ goes to zero at its center, where the discontinuity in phase takes place,
and then monotonically recovers until it reaches its value in the Meissner state.

In Fig. 4, we show the profile of the z component of the local magnetic field for
the same vortex. As we can see, the peak of the field occurs at the center of the vortex,
with the field gradually going to zero away from it. In this example, we have set κ = 1,
so the magnetic field extends over the same radius as the vortex core described above.

Finally, in Fig. 5 we show the behavior of the supercurrent in the superconductor.
Panel a) displays the vector plot of the current, illustrating the circulation around the
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Figure 4 – Color plot of the z component of the magnetic field profile of a superconductor
with a vortex at its the center (blue means hz = 0 and red the maximum value
of the field).

center of the vortex, which produces the magnetic field profile observed earlier. To under-
stand how the current is distributed throughout the superconductor, Panel b) presents a
color plot of the current’s magnitude. It is evident that the current reaches its maximum
just outside the vortex core, which is a consequence of the fact that it is energetically
favorable for currents to flow in regions of robust superconductivity, where the resistance
is lower than in the normal region at the vortex core.

1.1.2.5 Vortices in a Type II Superconductor

Let us now examine how vortices behave in a type II superconductor. Previously,
we demonstrated that in these materials, superconductivity can persist above Hc by al-
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Figure 5 – Vector plot of the supercurrent of a superconductor with a vortex at its center
(panel a)). Color plot of the modulus of this supercurrent (panel b)).

lowing the penetration of magnetic flux in the form of superconducting vortices. However,
we have not specified the applied field at which the system exits the Meissner state and
enters the mixed state. This critical field is known as the lower critical field, Hc1. To
determine its value, we start by noting that, in this regime, vortices are spaced far apart
from each other, allowing us to assume they do not interact. In this case, we can treat
the system as if only one vortex is present, and the following expression must hold true
at Hc1:

GMeissner = GOne vortex , (1.47)

where GMeissner is the Gibbs free energy of the superconductor in the Meissner state and
GOne vortex is the free energy of the system when one vortex is present.

The Gibbs free energy for a superconductor with a vortex can be written as:

GOnevortex = Fs + ϵvL−
Hc1

∫
hdV

4π
, (1.48)

where Fs is the free energy of the Meissner state, ϵv is the free energy per unit length of
a vortex and L is the length of the vortex line.

As we saw, the flux carried by a vortex is equal to the magnetic flux quantum.
Also remembering that GMeissner = Fs, we have:

Hc1 =
4πϵv
Φ0

. (1.49)
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Our task, then, is to find the free energy per unit length ϵv. To do this for a general
value of κ would require the numerical solution of the Ginzburg-Landau equations for each
value of the parameter. Instead, we focus on a the high κ limit, where the London model
can be used and a simple solution for Hc1 is possible to be obtained.

The problem is then to calculate the magnetic field profile produced by a vortex,
which is here described as a small core of radius ξ << λ. Outside the core region, the
London equation for the local field holds. Due to the symmetries of the problem, h =

hz(r)ẑ, with hz given by:

∇2hz(r)−
1

λ2
hz(r) = 0 . (1.50)

Such equation has a well known solution and, since hz(r) must go to zero as r → ∞,
the local magnetic field is promptly obtained:

hz(r) = CK0

( r
λ

)
, (1.51)

where K0 is the modified Bessel function of the second kind. Since λ >> ξ, we can assume
the field as a constant at the vortex core, hence, for r < ξ the magnetic field profile is:

hz(r) = CK0

(
ξ

λ

)
. (1.52)

We now need to determine the constant C. To do so, we calculate the total flux
produced by the vortex and impose it to be equal to Φ0. We calculate the fluxoid in a
path far away from the vortex, such that Js is zero and we can use Eq. 1.44:

∫
hzda = Φ0 , (1.53)

substituting the expression for the field:

C

(
2πK0

(
ξ

λ

)∫ ξ

0

rdr +

∫ ∞

ξ

2πK0

( r
λ

)
rdr

)
= Φ0 . (1.54)

Since the integral involving the Bessel function is known, we can express C as:

C =
Φ0

2πλ2

(
1

2κ2
K0

(
ξ

λ

)
+

1

κ
K1

(
ξ

λ

))−1

. (1.55)

We can further simplify this by noting these two limits involving the modified
Bessel functions hold:
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lim
κ→∞

1

κ2
K0

(
1

κ

)
= 0

lim
κ→∞

1

κ
K1

(
1

κ

)
= 1 , (1.56)

which means that, since λ >> ξ, the flux through the vortex core is negligible and the
whole flux comes from the regions outside the vortex core.

With this result, we can finally write the local magnetic field of a vortex in the
high κ limit as:

hz(r) =
Φ0

2πλ2
K0

( r
λ

)
for r ≥ ξ

hz(r) =
Φ0

2πλ2
K0

(
ξ

λ

)
for r < ξ . (1.57)

It is useful for the following discussions to point out that this same expression for
the local field can be obtained through the solution of a modified version of the London
model to include the presence of the vortex. The new equation is given by:

∇2hz(r)−
1

λ2
hz(r) = −Φ0

λ2
δ2(r)ẑ . (1.58)

Once we have the magnetic field profile, we can obtain the free energy per unit
length of a vortex ϵv, thus finding a closed expression for Hc1. The energy for the system,
according to the London model, is given by:

ϵv =
1

8π

∫ (
h2 + λ2|∇× h|2

)
dA , (1.59)

where we are integrating over the superconducting area excluding the vortex core, thus
neglecting the energy coming from the suppression of the superconducting state at the
core, since ξ is very small.

Using Eq. 1.58 and a vector identity on the second term of the integral, we have:

ϵv =
1

8π

∫
hz(r)Φ0δ2(r)da+

λ2

8π

∮
h × (∇× h) · ds . (1.60)

Since we are excluding the core region in our integration, the delta function at
the first term is always zero and this term can be dropped. To obtain ϵ we then need to
solve the line integrals of the second term over the two contours. The first of them is at
r → ∞, which does not contribute to the energy, as the magnetic field goes to zero at this
limit. The other line integral is performed at r = ξ and here we use the approximation
K0(r) = ln(1/r) for this value of radius. With this, we finally obtain:
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ϵv =

(
Φ0

4πλ

)2

ln(κ) . (1.61)

Now that we know ϵv, we can obtain the lower critical field from Eq. 1.49:

Hc1 =
4π

Φ0

(
Φ0

4πλ

)2

ln(κ) = Φ0

4πλ2
ln(κ) = Hc√

2κ
ln(κ) . (1.62)

Once we know at which field vortices start to penetrate bulk superconductors, it
is interesting to investigate how they interact with each other when there is more than
one vortex in the system. To do so, we calculate the force between two vortices located
at r1 and r2, respectively. The profile of the local magnetic field of these two vortices can
then be decomposed as:

hz2v(r) = hz (|r − r1|) + hz (|r − r2|) , (1.63)

where hz is the same field calculated above and given by Eq. 1.57.

Using Eq. 1.63 to calculate the energy of this configuration in the same manner
that was done by a single vortex, it is simple to see that the free energy per unit length
of the two vortex system is given by:

ϵ2v =
Φ0

8π
(hz1(r1) + hz1(r2) + hz2(r1) + hz2(r2)) , (1.64)

with Hzi(r) being the field of the ith vortex calculated at position r.

Since hz1 and hz2 are completely symmetric, this can be simplified as:

ϵ2v =
Φ0

8π
(hz1(r1) + hz1(r2)) . (1.65)

We can see that the first term is the energy of two isolated vortices, while the
second term gives the increment in energy due to their interaction. With the previous
definition of hz, we see that the interaction energy between two vortices EI is given by:

EI =
Φ2

0

8π2λ2
K0

(
|r1 − r2|

λ

)
. (1.66)

The Bessel function monotonically decays as the distance between the vortices
increases, which means the interaction between two vortices is always repulsive. On the
other hand, if the two vortices have different polarity, i.e., current flowing in opposite
directions, the interaction is attractive and the two vortices become gradually closer until
they annihilate each other. A vortex with opposite polarity is known as an antivortex.
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Figure 6 – Color plot of the modulus of the order parameter in a region of a supercon-
ducting system containing 12 vortices. A quasi-hexagonal structure is clearly
seen. Distortion from perfect hexagonal lattice is due to boundary condition.

Given that vortices tend to repel one another, it is an interesting problem to
investigate in which structure they organize themselves when the applied field is large
enough to allow the penetration of several vortices in a bulk superconductor. It was shown
by Abrikosov in his seminal paper that a hexagonal lattice is the configuration with the
smallest energy. To see this, we numerically solve the Ginzburg-Landau equations for a
system with 12 vortices and periodic boundary conditions. Fig. 6 shows the color plot of
the modulus of the order parameter for this system, where the hexagonal pattern predicted
by Abrikosov can be promptly identified.
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1.1.2.6 Flux Flow

The ability to carry electrical current with no energy dissipation makes supercon-
ductor materials natural candidates to a series of applications from electronic devices of
nanoscale used in computers and other communication systems to large magnetic field
generators. The zero resistance, though, does not depend solely on the capacity of the
superconductor to support the generated fields, but also on the behavior of the vortices
present in the sample.

In the presence of an applied current density J, a vortex feels a force given by:

F = J × Φ0ẑ
c

, (1.67)

where we see that the force is perpendicular to the applied current.

Now, assuming this force is sufficient to set the vortex in motion, an induced
electric field parallel to the current density will emerge. This indicates that the motion
of the vortex is accompanied by energy dissipation, which poses a significant challenge to
achieve zero resistance in devices based on superconducting materials.

To mitigate this issue, pinning techniques were developed, whereby vortices are
attracted to specific small areas of the superconductor (typically in the order of ξ). his
increases the applied current required to set them in motion. If this pinning is very strong,
finite resistance emerges only when the current is sufficient to induce a vortex jump from
one pinning site to another, in a phenomenon known as flux creep. Conversely, weak
pinning results in smooth vortex motion, referred to as flux flow, which we will explore
below.

Suppose the vortex, driven by the Lorentz force, moves with a constant velocity,
due to the action of a viscous drag caused by the superconducting medium. Eq. 1.67 gives
the following expression:

ηv = F = J × Φ0ẑ
c

, (1.68)

where η is the viscosity coefficient of the medium.

The electric field associated with this motion can be expressed as:

E = h × v
c
. (1.69)

Combining Eqs. 1.68 and 1.69 and already taking into account the direction of the
vectors as discussed above, we have:

ρf =
E

J
=
hΦ0

ηc2
, (1.70)
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with ρf being the resistivity that arises from the vortex motion.

To conclude this analysis and find the flux flow resistivity, we then need to obtain
the value of the viscosity coefficient. Although this demands a detailed analysis of the
evolution of the order parameter with the time-dependent Ginzburg-Landau theory, a
simpler model was developed by Bardeen and Stephan [18] which gives us an expression
for η, as well as an understanding of its origin. In this model, dissipation arises from normal
currents that exist in the vortex core solely due to its motion. Through straightforward
calculations using the London model, which can be found in Ref. [19], η can be expressed
as:

η =
Φ0Hc2

ρnc2
, (1.71)

where ρn is the resistivity of the normal state.

1.1.3 BCS theory
1.1.3.1 Cooper Pairs

So far, we have introduced the phenomenological theories that describe the phe-
nomenon of superconductivity. Let us now briefly discuss how the emergence of the super-
conducting state can be explained from a microscopic perspective. To do this, we begin
by illustrating how two electrons can form a bound state when placed in a Fermi sea.
This explanation, along with the subsequent discussion on BCS theory, is inspired by the
topics presented in Refs. [19, 20, 21, 22].

We assume that the two electrons wave function depends only on the relative
position of the electrons and can be written as:

ψ(r1 − r2) =
∑

k
g(k)eik·(r1−r2) , (1.72)

where we have assumed that the total momentum of the electron pair is zero. As the two
electrons are placed in a Fermi sea, the amplitude g(k) must be zero for k < kF .

The Schrödinger equation for our system is given by:

− h̄2

2m

(
∇2

1 +∇2
2

)
ψ(r1 − r2) + V (r1, r2)ψ(r1 − r2) = E ′ψ(r1 − r2) , (1.73)

with V (r1, r2) representing the electron-electron interaction. In momentum space, this
interaction can be written as:

Vk,k′ =
1

L3

∫
V (r)e−i(k−k′)·rd3r , (1.74)



Chapter 1. Introduction 44

r being the relative position between the electrons and L3 is the volume of our system.

To facilitate our discussion, let us redefine the energy in Eq. 1.73 as E ′ → E+
h̄2k2F
m

,
where 2EF =

h̄2k2F
m

is the energy of two free electrons at the Fermi surface. In this case, a
negative value of E means the formation of a two electrons bound state and the breaking
of the normal state. Substituting Eqs. 1.72 and 1.74 on Eq. 1.73, we have:

h̄2k2

2m
g(k) +

∑
k′

g(k′)Vk,k′ = (E + 2EF )g(k) , (1.75)

to get this result, one need to multiply Eq. 1.73 by e−iq·r and integrate over r.

In Eq. 1.75, the energy E is positive for all repulsive form of the interaction Vk,k′ .
Our goal is to show that an attractive interaction between the electrons can lead to
negative values of E. To facilitate our analysis, let us assume the interaction is nonzero
and equal to Vk,k′ = −V /L3 only at a small region above the Fermi surface such that
h̄2k2/2m < EF + h̄ωD and h̄2k′2/2m < EF + h̄ωD.

Substituting this interaction in Eq. 1.75 and rearranging the terms, we have:

(
− h̄

2k2

2m
+ E + 2EF

)
g(k) = − V

L3

∑
k′

g(k′) , (1.76)

where the sum must be over EF < h̄2k′2/2m < EF+h̄ωD, given the form of the interaction
potential and the existence of the Fermi sea.

Eq. 1.76 can only be true if the following condition also holds:

1 =
V

L3

∑
k′

1
h̄2k′2

m
− E − 2EF

. (1.77)

To find the value of E, it is more convenient to go from the discrete sum to an
integral formulation of Eq. 1.77. To do this, we define ϵ = h̄2k′2/2m−EF and the density
of state relating k′ to ϵ N(ϵ) = (2π)−34πk′2dk′/dϵ. Eq. 1.77 can then be expressed as:

1 = V

∫ h̄ωD

0

dϵN(ϵ)
1

2ϵ− E
, (1.78)

to obtain a closed expression for E, we approximate N(ϵ) → N(0). The integral then
becomes trivial and we obtain:

1 =
N(0)V

2
ln
(
E − 2h̄ωD

E

)
(
e2/N(0)V − 1

)
E = −2h̄ωD

E = −2h̄ωDe
−2/N(0)V , (1.79)
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where, to obtain the last line, we have assumed N(0)V is very small and performed a
Taylor expansion of the exponential in the second line. As we can see from the final result,
a small attractive interaction between two electrons placed in a background Fermi sea is
sufficient to break the normal state and form a bound state, the so called Copper pair.
In conventional superconducting materials, the attractive interaction has origin in the
electron-phonon interaction.

1.1.3.2 BCS Ground State

Now that we have established the possibility of Copper pair formation, let us
discuss the ground state of many Cooper pairs. We will limit ourselves to show how the
ground state of our system exhibits a finite energy gap below the critical temperature for
the transition to the superconducting state, referring the reader to the above cited books
for the discussion about the magnetic response of this ground state and the origin of the
Meissner state.

We start by defining our model Hamiltonian, which takes into account all the
important interactions for the emergence of the superconducting state:

H =
∑
kσ

ϵkc
†
kσckσ +

∑
k,k′

Vk,k′c†k↑c
†
−k↓c−k′↓ck′↑ , (1.80)

where σ refers to the electron spin and ϵk = h̄2k2/2m − µ, with µ being the chemical
potential of our system.

To treat Eq. 1.80, we perform a mean field approximation, introducing:

b∗k =
〈
c†k↑c

†
−k↓

〉
. (1.81)

With this, c†k↑c
†
−k↓ can be written as the sum of the average value defined in Eq. 1.81

and a small correction, such as:

c†k↑c
†
−k↓ = b∗k +

(
c†k↑c

†
−k↓ − b∗k

)
, (1.82)

and the product appearing in Eq. 1.80 can be linearly approximated, disregarding the
product between the terms inside the parenthesis. Our model Hamiltonian can then be
simplified as:

H =
∑
kσ

ϵkc
†
kσckσ +

∑
k,k′

Vk,k′

(
c†k↑c

†
−k↓bk′ + c−k′↓ck′↑b

∗
k − b∗kbk′

)
. (1.83)

Proceeding, we now define the superconducting gap:
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∆k = −
∑

k′

Vk,k′
〈
c−k′↓ck′↑

〉
, (1.84)

and the Hamiltonian becomes:

H =
∑
kσ

ϵkc
†
kσckσ −

∑
k

(
c†k↑c

†
−k↓∆k + c−k↓ck↑∆

∗
k − bk∆

∗
k

)
. (1.85)

To solve this Hamiltonian, we now need to perform a transformation to obtain
an expression which is linear in the creation and annihilation operators. The suitable
transformation for this is:

ck↑ = u∗kγk0 − vkγ
†
−k1

c†−k↓ = v∗kγk0 + ukγ
†
−k1 . (1.86)

To find the expressions for uk and vk, we must impose that the transformed Hamil-
tonian is linear with respect to the new operators. Which means that terms containing
cross products of γ†k0γ

†
k1, γk0γk1, γ†k0γk1 and γ†k1γk0 to vanish. Substituting Eq. 1.86 on

the Hamiltonian of Eq. 1.85, we obtain:

H =
∑

k

(
ϵk
(
|uk|2 − |vk|2

)
+ u∗kv

∗
k∆k + ukvk∆

∗
k
) (
γ†k0γk0 + γ†k1γk1

)
+

∑
k

(
2ϵku

∗
kvk − u∗2k ∆k + v2k∆

∗
k
)
γ†k0γ

†
k1

+
∑

k

(
2ϵkukv

∗
k − u2k∆

∗
k + v∗2k ∆k

)
γk1γk0

+ 2ϵk|vk|2 − ukv
∗
k∆k − u∗kvk∆

∗
k + bk∆

∗
k . (1.87)

As can be seen, to make the Hamiltonian diagonal, second and third lines must
be taken out. This can be guaranteed by imposing the following relationship:

2ϵkukv
∗
k − u2k∆

∗
k + v∗2k ∆k = 0 , (1.88)

which must be combined with the imposition that {γ†k0, γk0} = {γ†k1, γk1} = 1,
which leads to the following relationship:

|uk|2 + |vk|2 = 1 , (1.89)

we can then write uk and vk as:
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uk = eiφ cos (θ/2)
vk = eiφ sin (θ/2) , (1.90)

from Eq. 1.89, one can see that we must have ∆k = |∆k|e2iφ.

Substituting these expressions in Eq. 1.88 and using the appropriate trigonometric
relationships, we obtain:

ϵk sin(θ)− |∆k| cos(θ) = 0 , (1.91)

from this, we have:

sin2(θ) + cos2(θ) = 1(
1 +

|∆k|2

ϵ2k

)
cos2(θ) = 1

cos(θ) =
ϵk√

|∆k|2 + ϵ2k
, (1.92)

and consequently:

sin(θ) = |∆k|√
|∆k|2 + ϵ2k

. (1.93)

Again using trigonometric identities, we can finally write closed expressions for
|uk|2 and |vk|2:

|uk|2 =
1

2

(
1 +

ϵk

Ek

)
|vk|2 =

1

2

(
1− ϵk

Ek

)
, (1.94)

where we have introduced Ek = |∆k|2 + ϵ2k. Hereafter, we take the positive root solution
for both uk and vk in the equation above.

Substituting this in Eq. 1.87, we obtain our final model Hamiltonian:

H =
∑

k
Ek

(
γ†k0γk0 + γ†k1γk1

)
+ E0 , (1.95)

where E0 denotes a constant energy term.

We are now able to evaluate the superconducting gap defined in Eq. 1.84:
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∆k = −
∑

k′

Vk,k′
〈
c−k′↓ck′↑

〉
= −

∑
k′

Vk,k′∆k′

2Ek′
tanh

(
Ek′

2kBT

)
, (1.96)

where we have used the transformations given by Eq. 1.86 and statistical mechanics to
calculate the averages involving the operators.

To proceed, we must make an assumption about the form of the interaction po-
tential. Again, we take it to be k independent and only nonzero within a finite energy
range:

Vk,k′ = −V if |ϵk| , |ϵk′ | < h̄ωD

Vk,k′ = 0 if |ϵk| , |ϵk′ | > h̄ωD . (1.97)

As a consequence, the superconducting gap must also be nonzero only in this same
energy interval, which gives us:

∆k = ∆ if |ϵk| , |ϵk′ | < h̄ωD

∆k = 0 if |ϵk| , |ϵk′ | > h̄ωD . (1.98)

Eq. 1.96 then becomes:

1 = V
∑

k′

1

2Ek′
tanh

(
Ek′

2kBT

)
. (1.99)

Converting the sum to an integral, we have:

1 = N(0)V

∫ h̄ωD

0

dϵ
1√

∆2 + ϵ2
tanh

(√
∆2 + ϵ2

2kBT

)
, (1.100)

where we have again approximated the density of states for its value at the Fermi surface.

To gain some insight, let us set the temperature to zero and calculate the resulting
superconducting gap. From Eq. 1.100 we have:

1 = N(0)V

∫ h̄ωD

0

dϵ
1√

∆2 + ϵ2
= N(0)V sinh−1

(
h̄ωD
∆

)
. (1.101)

If we consider that N(0)V is very small, this can be rewritten as:

∆(0) = 2h̄ωDe
−1/N(0)V . (1.102)
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Eq. 1.101 shows us that a weak attractive interaction between the electrons leads
to formation of a superconducting state and to the formation of an energy gap. From
Eq. 1.100 we can also determine the critical temperature Tc above which there is no
superconductivity. To do so, we substitute ∆ = 0 in this equation. We then have:

1 = N(0)V

∫ h̄ωD

0

dϵ
1

ϵ
tanh

(
ϵ

2kBTc

)
1 = N(0)V

∫ h̄ωD/2kBTc

0

dx
tanh(x)

x
, (1.103)

where in the second line we have substituted ϵ = 2kBTcx. The last integral is tabulated
and we can write the final result as:

1 = N(0)V ln
(
2eγh̄ωD
πkBTc

)
kBTc = 1.13h̄ωDe

−1/N(0)V . (1.104)

where γ = 0.577 and 2eγ/π ≈ 1.13.

Comparing Eqs. 1.102 and 1.104, we reach an important result of the BCS theory:

∆(0)

kBTc
= 1.764 , (1.105)

which has excellent agreement with experimental results.

1.1.4 Microscopic Derivation of the Ginzburg-Landau Equations
Previously, we have obtained the Ginzburg-Landau equations that describe the

superconducting state of a conventional s-wave superconductor through phenomenological
arguments. In what follows, we will show that this equation can be derived directly from
the BCS theory in the limit T → Tc, as it was first shown by Gor’kov [23].

We start the description, based on the derivation given by Refs. [22, 21], by writing
the grand canonical Hamiltonian for our system:

K̂ =

∫
d3r ψ̂(r)†α

[
1

2m

(
−ih̄∇+

eA(r)
c

)2

− µ

]
ψ̂(r)β

− g

2

∫
d3r ψ̂(r)†αψ̂(r)

†
βψ̂(r)βψ̂(r)α . (1.106)

If we consider the normal state as a free electron gas and use the Hartree-Fock
approximation to treat the formation of the Cooper pairs, we get:
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K̂eff = =

∫
d3r ψ̂(r)†α

[
1

2m

(
−ih̄∇+

eA(r)
c

)2

− µ

]
ψ̂(r)β

− g

∫
d3r
[〈
ψ̂(r)†↓ψ̂(r)

†
↑

〉
ψ̂(r)↑ψ̂(r)↓ + ψ̂(r)†↓ψ̂(r)

†
↑

〈
ψ̂(r)↑ψ̂(r)↓

〉]
,(1.107)

where the averages above are given by:

〈
ψ̂(r)†↓ψ̂(r)

†
↑

〉
=

Tr
[
e−βK̂eff ψ̂(r)†↓ψ̂(r)

†
↑

]
Tre−βK̂eff

. (1.108)

We now define the Heisenberg operators:

ψ̂K↑(r, τ) = eK̂eff τ/h̄ψ̂↑(r)e−K̂eff τ/h̄

ψ̂†
K↓(r, τ) = eK̂eff τ/h̄ψ̂†

↓(r)e−K̂eff τ/h̄ , (1.109)

which satisfies the following equations of motion:

h̄
∂ψ̂K↑

∂τ
= −

[
1

2m

(
−ih̄∇+

eA(r)
c

)2

− µ

]
ψ̂K↑ − g

〈
ψ̂↑ψ̂↓

〉
ψ̂†
K↓

h̄
∂ψ̂†

K↓

∂τ
=

[
1

2m

(
−ih̄∇+

eA(r)
c

)2

− µ

]
ψ̂†
K↓ − g

〈
ψ̂†
↓ψ̂

†
↑

〉
ψ̂K↑ . (1.110)

We are now ready to define the Green’s function:

G(rτ, r′τ ′) = −
〈

Tτ

[
ψ̂K↑(rτ)ψ̂†

K↑(r′τ ′)
]〉

, (1.111)

where Tτ indicates the time ordered product of the operators.

Deriving with respect to τ , we obtain:

h̄
∂G(rτ, r′τ ′)

∂τ
= −h̄δ(τ − τ ′)δ(r − r′)

−

[
1

2m

(
−ih̄∇+

eA(r)
c

)2

− µ

]
G(rτ, r′τ ′)

+ g
〈
ψ̂↑(r)ψ̂↓(r)

〉〈
Tτ

[
ψ̂†
K↓(rτ)ψ̂

†
K↑(r′τ ′)

]〉
. (1.112)

To simplify this equation, we define an anomalous Green’s function:
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F (rτ, r′τ ′) = −
〈

Tτ

[
ψ̂K↑(rτ)ψ̂K↓(r′τ ′)

]〉
F †(rτ, r′τ ′) = −

〈
Tτ

[
ψ̂†
K↓(rτ)ψ̂

†
K↑(r′τ ′)

]〉
, (1.113)

and the gap function:

∆((r) = gF (rτ+, rτ) = −g
〈
ψ̂↑(r)ψ̂↓(r)

〉
. (1.114)

With this, Eq. 1.112 can be rewritten as:

[
−h̄ ∂

∂t
− 1

2m

(
−ih̄∇+

eA(r)
c

)2

+ µ

]
G(rτ, r′τ ′)+∆((r)F †(rτ, r′τ ′) = h̄δ(τ−τ ′)δ(r−r′) .

(1.115)

If we carry out the same procedure for the anomalous functions defined in Eq. 1.113,
we obtain the following set of equations:

[
−h̄ ∂

∂t
− 1

2m

(
−ih̄∇+

eA(r)
c

)2

+ µ

]
F (rτ, r′τ ′) = ∆((r)G(rτ, r′τ ′)[

h̄
∂

∂t
− 1

2m

(
ih̄∇+

eA(r)
c

)2

+ µ

]
F †(rτ, r′τ ′) = ∆∗((r)G(rτ, r′τ ′) . (1.116)

Suppose now that our Hamiltonian does not depend on time, which means our
Green’s functions are functions of (τ−τ ′). Which allows us to use a Fourier transformation
with the Matsubara frequencies:

G(rτ, r′τ ′) = (βh̄)−1
∑
n

e−iωn(τ−τ ′)G(r, r′, ωn)

F †(rτ, r′τ ′) = (βh̄)−1
∑
n

e−iωn(τ−τ ′)F †(r, r′, ωn) , (1.117)

where ωn = (2n+ 1)π/(βh̄).

In the same manner, the gap function is given by:

∆(r) = g

βh̄

∑
n

F †(r, r′, ωn) . (1.118)

With these new definitions, the equations of motion for the Green’s functions in
the new representation are given by:
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[
ih̄ωn −

1

2m

(
−ih̄∇+

eA(r)
c

)2

+ µ

]
G(r, r′, ωn) + ∆(r)F †(r, r, ωn) = h̄δ(r − r′)[

−ih̄ωn −
1

2m

(
ih̄∇+

eA(r)
c

)2

+ µ

]
F †(r, r′, ωn)−∆∗(r)G(r, r′, ωn) = 0 . (1.119)

To proceed, we define the normal state Green’s function G0(r, r′, ωn), obtained
with ∆(r) = 0:

[
ih̄ωn −

1

2m

(
−ih̄∇+

eA(r)
c

)2

+ µ

]
G0(r, r′, ωn) = h̄δ(r − r′) . (1.120)

The definition of the normal state Green’s function allows us to rewrite Eqs.1.119
in an integral form. These equations are given by:

G(r, r′, ωn) = G0(r, r′, ωn)− h̄−1

∫
d3r1G0(r, r1, ωn)∆(r1)F †(r1, r′, ωn) , (1.121)

and:

F †(r, r′, ωn) = h̄−1

∫
d3r1G0(r1, r,−ωn)∆∗(r1)G(r1, r′, ωn) , (1.122)

Finally, substituting Eq. 1.122 on Eq. 1.121 and Eq. 1.121 on Eq. 1.122, we can
separate these two equations and obtain one integral equation for the Green’s function
and another for the anomalous Green’s function:

G(r, r′, ωn) = G0(r, r′, ωn)− h̄−2

∫ ∫
d3r1d3r2G0(r, r1, ωn)∆(r1)G0(r2, r1,−ωn)

∆∗(r2)G(r2, r′, ωn)

F †(r, r′, ωn) = h̄−1

∫
d3r1G0(r1, r,−ωn)∆∗(r1)G0(r1, r′, ωn)

− h̄−2

∫ ∫
d3r1 d3r2G0(r1, r,−ωn)∆∗(r1)G0(r1, r2, ωn)

∆(r2)F †(r2, r′, ωn) . (1.123)

With these equations, we make the first assumption to go to the Ginzburg-Landau
limit, which is that the superconducting gap is small. With Eq. 1.123 and this approxi-
mation, we can write the gap given in Eq. 1.118, up to third order, as:
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∆∗(r) = (βh̄2)−1
∑
n

∫
d3r1G0(r1, r,−ωn)G0(r1, r, ωn)∆∗(r1)

− (βh̄4)
∑
n

∫ ∫ ∫
d3r1 d3r2d3r3G0(r1, r,−ωn)G0(r1, r2, ωn)G0(r3, r2,−ωn)

G0(r3, r, ωn)×
× ∆∗(r1)∆(r2)∆∗(r3) . (1.124)

To proceed, we need to know the normal state Green’s function. As a matter of
condensed matter theory, this function is widely known when there is no applied magnetic
field in the system. In this case, the Green’s function is given by:

G0(r − r′, ωn) =
h̄

2π3

∫
d3k

eik·(r−r′)

ih̄ωn − h̄2k2/2m
. (1.125)

The next step is the second assumption to the Ginzburg-Landau limit, which is
that the temperature of the system is close to Tc. In this region, the gap function and the
vector potential are slow varying functions when compared to the Green’s functions. In
this scenario, we can write the normal state Green’s function in the presence of an applied
field as an eikonal expansion of the following form:

G0(r, r′, ωn) = eiϕ(r−r′)G0(r − r′, ωn) , (1.126)

where the phase factor is given by:

ϕ(r − r′) = − e

2h̄c
[A(r) + A(r′)] · (r − r′) . (1.127)

The final form of the Ginzburg-Landau equation is recovered by applying Eq. 1.126
in Eq. 1.124, solving the sums and the integrals, with the use of a Fourier transformation
and the assumption that the Fermi surface is a sphere. After this procedure, the phe-
nomenological constants that appear in the Ginzburg-Landau equations can be expressed
in terms of microscopic parameters of the superconductor material as fallows:

α = − 6π2T 2
c

7ζ(3)ϵF

(
1− T

Tc

)
β =

6π2T 2
c

7ζ(3)ϵFn
, (1.128)

where ϵF is the Fermi energy and n is the electron density.
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1.1.5 Superconductors Described by More than One Condensate
In some materials, where Cooper pair formation occurs in multiple electronic bands,

the superconducting state is, phenomenologically, correctly described by more than one
order parameter. In this subsection, we discuss some of the characteristic features of such
systems. To do so, we focus on the simple case of a superconductor with two condensates.
As we are mainly interested in the macroscopic properties of superconductors, such as their
vortex matter, we simplify the microscopic properties of the system and simply assume
that each condensate relates to an electronic band. With this simplification, hereafter we
often refer to the order parameters as being of band 1 or band 2.

The Ginzburg-Landau equations for a two-band superconductor are given by Ref. [24]:

− (−i∇− A)2 ∆1 +
(
χ1 − |∆1|2

)
∆1 + γ∆2 = 0, (1.129)

−D2

D1

(−i∇− A)2 ∆2 +
(
χ2 − |∆2|2

)
∆2 +

n1

n2

γ∆1 = 0, (1.130)

where ∆i is the order parameter correspondent to band i, with Di and ni being the
diffusion coefficient and partial density of states of such band. Given the matrix of coupling
constants of our two-band system:

Λ̂ =

(
n1λ11 n2λ12

n1λ12 n2λ22

)
, (1.131)

the parameters χi in Eq.1.130 are given by:

χ1 = 1− T + S − λ22/n1δ

χ2 = 1− T + S − λ11/n2δ, (1.132)

where S is the minimum positive eigenvalue of the matrix Λ̂−1 and δ = λ11λ22 − λ212.
Finally, the coupling between the two equations is given by γ = λ12/n1δ.

To understand the behavior of the solution of Eqs.1.130, we investigate the simple
case of homogeneous superconductivity in the absence of external fields. To do this, we
choose λ11 = 2.0, λ22 = 1.03, λ12 = 0.005, n1 = 0.355. The dependence of the order
parameter with temperature is shown in Fig. 7 for the first band (blue curve) and second
band (red curve). For this set of microscopic parameters, the second band is active up
to Tc2 = 0.9Tc and remains superconducting for T > Tc2 exclusively due to the coupling
with the first band. Here, we should note that the Ginzburg-Landau theory is only valid
very near Tc, in a region where the system effectively behaves as a single-band super-
conductor. In order to investigate the interplay between two active order parameters (an
order parameter is considered active if its critical temperature is higher than the system



Chapter 1. Introduction 55

Figure 7 – Equilibrium order parameter as a function of temperature for the first band
(blue curve) and second band (red curve). Here, λ11 = 2.0, λ22 = 1.03,
λ12 = 0.005 and n1 = 0.355. Curves were obtained through the numerical
solution of Eqs.1.130.

temperature) and the interesting physical phenomena that emerge from it, we push the
theory to lower temperatures. Though not mathematically precise, it has been shown by
comparison with microscopic theory that this gives correct physical results [25].

Let us now introduce the external magnetic field in our analysis and investigate the
behavior of a vortex in this two-band system. To do this, we introduce the supercurrent
density and the Ampère law:

Js − κ21∇× h = 0

Js =
2∑
j=1

nj
n1

Dj

D1

Re
[
∆∗
j (−i∇− A)∆j

]
, (1.133)

where κ1 is the Ginzburg-Landau parameter of the first band.

Fig.8 shows the order parameters of both bands for a system with one vortex and
D1/D2 and T = 0.8Tc. We can note that the coherence length of the second condensate is
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Figure 8 – Color plot of the order parameter of the first (left panel) and second (right
panel) bands for a superconductor carrying one vortex. Here, D1/D2 = 0.25.

larger. This occurs for two reasons. First, as can be seen from Eqs. 1.130, ξ2 increases as
the ratio D1/D2 decreases. Second, since the second band is the weaker one in our system,
our working temperature is closer to the critical temperature above which it becomes
passive, which increases its coherence length [26].

Having seen how the order parameters behave in a system with a vortex, we now
proceed to show how fluxoid quantization occurs in this case. From the expression for the
supercurrent density in Eq. 1.133, we have:

Js = − i (∆∗
1∇∆1 −∆1∇∆∗

1)− 2A|∆1|2

− in2D2

n1D1

(∆∗
2∇∆2 −∆2∇∆∗

2)− 2
n2D2

n1D1

A|∆2|2. (1.134)

Substituting ∆1 = a1e
iθ1 and ∆1 = a1e

iθ1 , we have:

Js = 2a21∇θ1 − 2a21A − 2a22
n2D2

n1D1

∇θ2 − 2a22A
n2D2

n1D1

. (1.135)

If we now integrate both sides of Eqs. 1.135 along a closed path far enough from
the vortex core where the system is in the Meissner state and Js = 0, we have:

(
a21 + a22

n2D2

n1D1

)
Φ = 2π

(
n1a

2
1 + n2a

2
2

n2D2

n1D1

)
, (1.136)

where Φ =
∮

A · ds and, due to the uniqueness of the order parameter,
∮
∇θi = 2niπ.

For the case where the vorticity is the same for both bands (n1 = n2 = n), it is easy to
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see that the magnetic flux is quantized as Φ = 2nπ. In natural units, this is the common
expression Φ = nΦ0.

From Eq. 1.136 it is useful to define the fraction of flux produced by the supercur-
rents in each band, that can be given by:

Φ1 =
2πa21

a21 + a22n2D2/(n1D1)

Φ2 =
2πa22n2D2/(n1D1)

a21 + a22n2D2/(n1D1)
. (1.137)

One interesting possibility that arises from these equations is the scenario of
n1 ̸= n2, which means the emergence of a vortex carrying a fraction of the flux quanta.
Such configurations are known as fractional vortices, in opposition to composite vortices,
with n1 = n2. Though mathematically possible, it has been shown that such states are
energetically forbidden in bulk superconductors, but can be stabilized near the edges of su-
perconducting samples. As we will discuss later, the application of a current can separate
a composite vortex into two fractional vortices, coupled through a phase soliton.

1.1.6 d-wave Superconductor
In later chapters, we are also interested in describing the physics of supercon-

ducting materials with d-wave pairing symmetry. In such systems, the Ginzburg-Landau
equations must be altered accordingly.

Unfortunately, due to symmetry, it is not possible to obtain these equations for
a system with only a d-wave order parameter [27]. Instead, one must consider also the
existence of a s-wave component, i.e., the system is described by two order parameters,
one with s-wave symmetry and another with d-wave symmetry.

The derivation of the Ginzburg-Landau equations in this case follows the same
steps we have outlined for the s-wave case, with the difference that the attractive interac-
tion potential between the electrons is now spatial dependent. Following the calculation
developed by Ren et. al. [27], the Ginzburg-Landau free energy, for dx2−y2 superconductors
is given by:

F = −2αs|∆s|2 − |∆d|2 +
4

3
|∆s|4 +

1

2
|∆d|4

+
8

3
|∆s|2|∆d|2 +

2

3
(∆∗2

s ∆2
d +H.c.)

+2|Π∆∗
s|2 + |Π∆∗

d|2 + (Πx∆
∗
sΠ

∗
x∆d

−Πy∆
∗
sΠ

∗
y∆d +H.c.) , (1.138)
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where αs determines the relative strength between the s and d-wave components. We
have introduced the operator Π = (i∇ − A) to facilitate our notation, ∆s and ∆d are
the s and d-wave components of the order parameter, respectively. The free energy is
given here in dimensionless units such that the order parameters are in units of ∆0 =√

(4/3W ) ln(Td/T ); lengths in units of the coherence length ξ = (νF/2)
√
W/ ln(Td/T ),

where νF is the Fermi velocity and W = 7ξ(3)/(8π2T 2); the magnetic field in units of Hc2.

To obtain the Ginzburg-Landau equations for each component of the order param-
eter, we need to minimize Eq. 1.138 with respect to the two components. Minimizing it
with respect to ∆s, we have:

−αs∆s +
4

3
|∆s|2∆s +

4

3
|∆d|2∆s +

2

3
∆2
d∆

∗
1

+Π∗2∆s +
1

2
(Π∗2

x − Π∗2
y )∆d = 0 , (1.139)

and minimizing it with respect to ∆d, we obtain:

−∆d + |∆d|2∆d +
8

3
|∆s|2∆d +

4

3
∆2
s∆

∗
d

+Π∗2∆d + (Π∗2
x − Π∗2

y )∆s = 0 . (1.140)

In a rapid analysis of Eqs. 1.139 and 1.140, we can see that the solutions to such
equations are no longer rotational invariant, as one would expect for a dx2−y2 material.
Choosing αs such that the s component plays a small role in the dynamics of the system
allows us to study superconductors with a dx2−y2 pairing.

1.2 Thesis Outline
Having introduced the basics and most important theoretical topics for our discus-

sions, we start to present the results of this thesis in the following chapters.

In Chapter 2 we begin our investigations treating the magnetic response of type
I mesoscopic superconductors. More precisely, we revisit the old problem of how the pres-
ence of an insulator/superconducting surface affects the classification of superconducting
materials between type I and II. By considering systems with small volume-to-area ratio,
we show that the Tinkham–de Gennes scenario is extended in the case of a mesoscopic
type-I superconductor. Namely, we find additional features of the transition at the passage
from the genuine to the intermediate type I. The latter has two distinct transitions, from
a paramagnetic to diamagnetic response in descending field, and a quasi-type-II behavior
as the critical coupling 1/

√
2 is approached in ascending field. The findings reported in

this chapter have been published in Ref. [28].
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In Chapter 3 we start considering the behavior of the vortex matter in the pres-
ence of a transport current. By solving the TDGL equations in a three-dimensional su-
perconducting film, we show that, above a certain critical thickness, the dynamics of
vortex-antivortex annihilation produces a closed vortex loop. This occurs because the
vortices and the antivortices become curved before they annihilate each other. As they
approach the center of the sample, their ends combine, producing a single closed vortex.
We also determine the critical values of the thickness for which the closed vortex sets in
for different values of the Ginzburg-Landau parameter and propose a model of how to
detect a closed vortex experimentally. The findings reported in this chapter have been
published in Ref. [29].

In Chapter 4, continuing our investigation on the vortex matter response to an
applied current, we study the superconducting diode. More specifically, we propose a
superconducting diode device comprising a central superconducting film flanked by two
wires carrying an applied dc bias, suitably chosen so as to generate different asymmetric
field profiles. Through the numerical solution of the TDGL equations, we show that this
design is capable of efficiently breaking the reciprocity of the critical current in the central
superconductor, thus promoting the diode effect in response to an applied ac. We also
conduct a series of simulations to determine the conditions that facilitate the entrance of
vortices and antivortices in a given polarity of the applied ac and impede their entrance
in the other polarity and show that our device can behave as a superconducting half-wave
rectifier, with diode efficiencies surpassing 70%. The findings reported in this chapter have
been published in Ref. [30].

In Chapter 5 we switch our focus to the study of superconducting system de-
scribed by more than one order parameter. Here, we investigate the transitions between
states with different winding number in two-band superconducting rings. Starting from
the Ginzburg-Landau theory of a two-component superconductor, we apply linear stabil-
ity theory to develop a semianalytical method that provides the critical flux for phase-slip
occurrence. We then applied the developed method to investigate how the critical flux
depends on physical properties, such as band parameters and temperature. In a second
moment, we numerically solve the TDGL equations to study the possibility of a soliton
state in our system, where the winding number of each condensate is not the same. The
findings reported in this chapter have been published in Ref. [31].

In Chapter 6 we focus on the study of the vortex matter in twisted bilay-
ers composed of d-wave superconductors. As it was recently shown, a chiral topolog-
ical phase emerges from the coupling of two twisted monolayers of superconducting
Bi2Sr2CaCu2O8+δ for certain twist angles. In this chapter, we investigate how the vor-
tex matter depends on the twist angle, showing the emergence of two skyrmionic states
that characterize the chiral topological phase and argue that the distinct signatures of
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their magnetic field profile can be used as a smoking gun for the experimental detection
of topological states in such structures. The findings reported in this chapter have been
published in Ref. [32].

Finally, in Chapter 7 we present our concluding remarks and the outlook for
future studies.

In Appendix A we describe in detail the numerical procedure for the solution
of the Ginzburg-Landau equations for superconducting systems under different physical
conditions.
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2 The Intermediate type I superconductor

2.1 Introduction
So far, we have treated the properties of superconductors in a bulk system, where

we have seen that superconducting materials can be divided in two groups, depending on
their response to an applied magnetic field. If we consider a more real scenario, where the
system under consideration has boundary surfaces, new physics emerge. Specifically, we
found a new critical field for the nucleation of superconductivity near the surfaces.

For example, with the help of a variational procedure, it can be shown that, in
a superconductor with an infinite plane surface, superconductivity nucleates first at the
boundary in a critical field Hc3 = 1.695Hc2. This means that, between Hc3 and Hc2,
superconductivity exists only near the surface, with the order parameter being null at its
interior, bulk superconductivity only existing below Hc2.

This renders a particularly interesting consequence to type I superconductor. As
we have seen, for materials with κ < 1/

√
2, we have Hc2 < Hc, which means that, although

superconductivity exists in an ascending field up to Hc, if the field is decreased, with the
system at the normal state, superconductivity can only be nucleated at the lower field
Hc2, which is known as supercooling.

In the presence of a surface, the scenario changes, once the supercooling is now
governed by Hc3 and no longer Hc2. For the plane surface discussed above, for example,
Hc3 < Hc for κc < 0.417. Hereafter, we call this a genuine type I behavior, once it continues
to present supercooling in a descending field. On the other hand, for κc < κ < 1/

√
2, we

have the peculiar situation where Hc2 < Hc < Hc3, which means that the system is still
type I, in the sense that it continues to not allow vortices, but now it no longer presents
supercooling. We refer to this as an intermediate type I behavior.

Although the value of κc depends on the geometry of the system, the transition
described above reflects a pure intrinsic property of superconductors, once there will
always be a κc for a given geometry. Experimental [33, 34, 35, 36] and theoretical [37, 38]
work have been carried out in this matter, but, once the majority of superconducting
materials that attracted practical interest in the last years are of type II, this question
was somewhat relegated. Despite of that, some superconducting alloys have been found
to, surprisingly, display type I behavior. As examples, we can name TaSi2 [39], the heavily
boron-doped silicon carbide [40], YbSb2 [41], YNiSi3 and LuNiSi3 [42]. In addition, since
the coherence length varies with disorder, we can control the value of κ with doping.

These new findings make it worth for us to revisit the problem of genuine-intermediate
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transition in type I superconductors. In what follows, we study this transition in meso-
scopic superconducting system, where the surface-to-volume ratio is larger, which en-
hances the importance of the boundaries and thus contributes to the physics responsible
for the transition in question. As we will see, in the mesoscopic limit, the intermediate type
I behavior is divided in different phases, with κc giving place to three different values κc1,
κc2 and κc3. For κ < κc1, the system shows the genuine type I behavior i.e. in ascending
field, it goes directly from the Meissner to the normal state and, reversely, in descending
field it goes from the normal to the Meissner state, with no vortices being stable at the
system in any branch of field sweep. In the κc1 < κ < κc2 region the behavior remains the
same in the ascending field branch, but the system now supports the existence of vortices
when the field is being decreased. In this region, the obtained magnetization response is
always diamagnetic. For κc2 < κ < κc3, the system behaves in the same manner as for
the last region, but now, in the descending field branch, the magnetization switch from
diamagnetic to paramagnetic regions. Finally, for κ > κc3, the behavior of the system
dramatically changes also in the ascending field branch, which no longer is characterized
by direct transition of the Meissner to the normal state. Instead, the system behavior is
marked by a substantial magnetization drop and the penetration of giant vortices [43, 44]
i.e. vortices with a vorticity larger than 1. We classified this behavior as quasi-type II,
once vortices are able to penetrate, but not as in the mixed state characteristic of type II
superconductors.

Here, it is important to emphasize that the existence of the different phases de-
scribed above is a direct consequence of the Ginzburg-Landau equations for systems with
mesoscopic dimensions, not depending on the system geometry. For instance, the transi-
tions discussed in the following must not be confused with the type I/type II crossover
that emerges from changing the thickness of a thin film [45, 46, 47]. Moreover, the phases
discussed in the present Chapter are obtained from the standard Ginzburg-Landau theory,
and therefore must not be confused with the intertype superconductivity obtained from
next order corrections of the GL model.

To facilitate our analysis, let us define some important fields. First, at the ascending
field branch, we define H ′

c, where the magnetization curve (−M) reaches its maximum
value and H ′′

c , where the the magnetization vanishes and the system goes to the normal
state. For κ < κc3, H ′

c and H ′′
c are close to each other, once the Meissner state is followed by

the normal state. For κ > κc3, the difference between the two fields becomes increasingly
larger, once a region with the presence of giant vortices arises. It is important to note that
both of these fields are larger than Hc, which means the superconducting state in these
regions is metastable i.e. displays a Gibbs free energy higher than the normal state one.
The final notable field, Hc3, is defined in the descending branch and it marks the field at
which superconductivity first nucleates and the system leaves the normal state.
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Figure 1 – The vorticity N of the system at the field which superconductivity is first
nucleated in descending field branch, Hc3, as a function of κ. The vorticity
is displayed for L = 16λ (blue curve) and L = 24λ (orange curve). The
insets show typical magnetization curves for κ < κc1 (left inset) and κ > κc1

(right inset). In the insets, blue and red curves represent the ascending and
descending field branches, respectively. The black ellipse highlight the region
where a vortex is trapped in the system.

Our results show that the above defined fields and, consequently, the response of
the system to an external field is strongly dependent of the value of κ. Our numerical
analysis shows that the genuine-intermediate transitions in the mesoscopic scale occur for
κc1 < κc, with the quasi type II behavior starting for κ < 1/

√
2. Interestingly, we have

obtained that, as the volume increases and approaches a bulk behavior, κc2 asymptotically
approaches κc. However, we have found no evidence that this result is more than just an
interesting coincidence.

2.2 Theoretical Formalism
The results here presented were obtained through the numerical solution of the

Ginzburg-Landau equations:
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Figure 2 – The value of κc2 as a function of L. The red circles are the critical values ob-
tained through the numerical simulations, the solid blue line gives an adjusted
curve for the obtained data and the dashed black line represents the value of
κc. Inset a) shows an example of a solely diamagnetic response obtained for
κc1 < κ < κc2, while inset b) exemplifies the behavior for κc2 < κ < κc3.

−ψ + |ψ|2ψ +

(
− i
κ
∇−A

)2

ψ = 0

∇× h = Js , (2.1)

where the supercurrent is given by:

Js = Re
[
ψ∗
(
− i
κ
∇−A

)
ψ

]
. (2.2)

In these equations, lengths are units of the penetration length λ, magnetic fields in
units of

√
2Hc and the vector potential in units of

√
2λHc. Our simulations were carried

in a long superconducting needle with square cross section L2. The needle is constructed
such that the top and bottom surfaces are very distant and play no role in this physics
of the problem. In such manner, we can treat our system as effectively two-dimensional.
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Figure 3 – The field H ′′
c as a function of κ for L = 16λ (blue curve), L = 24λ (red

curve) and L = 32λ (green curve). The left and right insets show typical
system behavior for κ lower and higher than κc3, respectively.

As boundary conditions, we impose that no current leaves the system and that the local
magnetic field is equal to the applied field at the boundaries of the system. To study how
the behavior of the system changes with system size, we simulate squares with L = ρλ,
with ρ = 8, 12, 16, 24 and 32. For every L, we have varied κ in steps of ∆κ = 0.01, from
κ = 0.125 to 0.8. In each case, the field was swept from zero up to the normal state at
steps ∆H = 0.001 and then swept back to zero. For details of the numerical method, see
Chapter 2.

2.3 Results and Discussion
Let us start discussing the transition occurring at κc1. Fig. 1 shows the vorticity

of the system calculated at Hc3 as a function of κ for two values of L. As defined above,
in the genuine type I behavior, the system goes from the normal to the Meissner state
directly, therefore, the vorticity at the nucleation field Hc3 must be zero. For an interme-
diate type I superconductor, however, vortices are trapped in the system in the moment
superconductivity is recovered, rendering a non-zero N . As shown in Fig. 1, this criteria
gives κc1 = 0.28 for L = 16λ and κc1 = 0.19 for L = 24λ.
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Figure 4 – The upper panel shows the magnetization curve for L = 16λ and κ = 0.6.
The lower panel show the Gibbs free energy of the same system, as a function
of the applied field. The inset in the lower panel shows the region highlighted
by the black ellipse. In both panels, we denote the thermodynamic field Hc

with a black circle.

In the insets of Fig. 1, we show the magnetization curves exemplifying these two
kinds of behavior. In these insets, blue and red curves give us the magnetization for the
ascending and descending branches, respectively. The left inset depicts the genuine case,
where the Meissner state is immediately recovered. In the right inset, on the other hand,
we can see an example of intermediate behavior, with a giant vortex being trapped in
the system, which leaves a characteristic mark in the magnetization curve, as highlighted
by the black ellipse. The color plot inside the right insight shows the phase of the order
parameter for the trapped vortex.

Fig. 2 shows how κc2 changes with L. The insets mark the difference in behavior for
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Figure 5 – Magnetization curves for L = 16λ, with κ ranging from 0.2 to 0.7. The
fields H ′

c, H ′′
c and Hc3 are denoted by the black triangle, square and circle,

respectively.

κ’s below and above this value. As we can see in panel (b), which shows the magnetization
curve for a typical case where κ < κc2. In such scenario, in the descending field branch,
vortices are trapped inside the system when superconductivity is restored. As the field is
adiabatically decreased, the vortices are gradually expelled from the superconductor, with
each magnetization step marking the exit of one or more vortices. Throughout the whole
process, the magnetic response of the system remains diamagnetic. For κ > κc2, on the
other hand, at certain field ranges, the magnetic response becomes paramagnetic, as we
can see in inset (c). This occurs because a high number of vortices remain trapped in the
system for much lower fields. It is interesting to note that κc2 presents a non-monotonic
behavior with increasing L and, as mentioned before, asymptotically approaches κc =

0.417 for large L.

The transition to the quasi-type II behavior is exemplified in Fig. 3, where we
show the field H ′′

c as a function of κ for three different values of L. As we can see, for
κ < κc3, H ′′

c gradually decreases as the value of κ is increased. On the other hand, there
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is a clear and sharp change of behavior at κc3 above which H ′′
c begins to increase with κ.

This reflects the fact that, for κ > κc3, vortices emerge in the ascending branch of the field,
which prolongs the existence of superconductivity, thus increasing the value of H ′′

c . The
left inset in Fig. 3 shows an example of a magnetization curve before κc3, where the normal
state sets in almost immediately after the system reaches the peak in magnetization at the
ascending branch. Conversely, the right inset shows an example of quasi-type II behavior,
where, after the magnetization peak, the system does not transit to the normal state,
but instead, a vortex phase is encountered. This vortex phase is highlighted in the black
ellipse in the inset.

As stated previously, the field H ′
c, which signals the peak in magnetization, occurs

in a metastable energy. This can be better visualised in Fig. 4, where we show the mag-
netization curve (upper panel) as well as the Gibbs free energy (lower panel) for L = 16λ

and κ = 0.6. The field Hc at which the Meissner and normal states have the same energy
is indicated with a black circle. As one can see, the peak of the magnetization occurs in a
region with positive free energy, thus being metastable, whereas the vortex state displays
a negative free energy, as shown in the inset. Contrary to this, the vortex phase found
for κ > κc3 in the ascending branch displays a lower energy than the normal state, thus
being energetically stable. For the true type II behavior case, all states are in the stable
region, including the field H ′

c.

The precise transition from quasi-type II to pure type II behavior is not our goal
here, but we have verified that quasi-type behavior is still encountered for κ’s as high as
0.8. As can be seen from Fig. 3, κc3 = 0.54 is the same for all system sizes presented in
the figure. In fact, for all values L investigated, we have obtained the same value for the
transition. We then conclude that κc3 does not depend on the size of the superconductor.

A compilation of all the physical behaviors describe above can be seen in Fig. 5,
where we show magnetization curves for L = 16λ, with κ values from 0.2 to 0.7. κ = 0.2

presents the genuine type I behavior, where vortices are not stable for both the ascending
and descending branches of the field. For κ = 0.3, we see the beginning of the intermediate
type I behavior, where vortices can be found in the descending branch. Once we have
κ ≈ κc1 in this case, the vortex can be found only in a small region of applied field and
its signature in the magnetization curve is small. On the other hand, for κ = 0.4 we can
see that vortices are present for a much larger portion of the descending field branch.
Once κ = 0.4 < κc2, our system displays a totally diamagnetic response. This changes for
κ = 0.5 > κc2, where we now have regions of field where the magnetization response is
paramagnetic. The quasi-type II behavior is exemplified for κ = 0.6, where we now have
a vortex phase also in the ascending branch. This vortex phase becomes more visible for
κ = 0.7, where its signature in the magnetization curve is much more pronounced.

In Fig. 6, we show the κ − L phase diagram displaying the transitions described
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Figure 6 – κ − L phase diagram for the three transitions discussed above. Each color
represent a different type of behavior presented by the system. The limiting
curves were obtained by the adjusting the critical values of κ found in the
simulations.

above. Each limiting κci(L) curve was obtained through a numerical adjustment on the
critical values obtained in the simulations. The purple region corresponds to the genuine
type I behavior, for κ < κc1(L). The blue region, which we have denominated intermediate
diamagnetic type I behavior, corresponds to κc1(L) < κ < κc2(L). In the green region, the
intermediate paramagnetic type I behavior, with κc2(L) < κ < κc3(L) Finally, the yellow
region shows the quasi-type II behavior, for κc3(L). As we can see, for certain values of
κ, we can transit from one behavior to another by varying the size of our system. Also,
by doping the superconductor with impurities, we can change its κ value and then obtain
different magnetic behaviors for the same L.

2.4 Concluding Remarks
As we have seen, mesoscopic superconductors are a particularly suitable candidate

for the study of the genuine-intermediate type I transition, once it introduces new layers
to its physics. We emphasize that such transitions arise already in the standard level of the
Ginzburg-Landau theory and are not related to the intermediate type of superconductors
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which appear when one takes into account the next terms in the Ginzburg-Landau expan-
sion of the superconducting free energy [48, 49]. Also, although the physics presented here
depends on the geometry of the samples, as it is the case of other transitions reported
in the literature [45, 46, 47], the genuine-intermediate type I transition is an intrinsic
property of the materials, once it occurs for other geometries [50].
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3 Closed Vortex in a Superconducting Film

3.1 Introduction
The existence of flux quantization in the so called Shubnikov phase of supercon-

ducting materials is one of the most interesting phenomena in condensed matter physics.
Bulk type-II superconductors allow the penetration of magnetic flux in quantized units
of Φ0 = hc/2e. such objects are known as magnetic vortices. Such vortices attract a great
amount of attention due to their many possible applications, ranging from single-photon
detectors to quantum information systems. In addition, once vortex motion leads to heat
dissipation, the detailed knowledge of how vortices behave under different circumstances
is of fundamental importance to the optimization of various superconducting based elec-
tronic devices.

From a theoretical point of view, as we have seen in previous chapters, the order
parameter goes to zero at vortex core and its phase changes by a multiple of 2π when
circulated around a given closed loop that encloses the vortex core. In a three-dimensional
sample, the core extends over a line, which tends to be aligned with the applied magnetic
field, with supercurrents circulating around this line. Hereafter, we refer this typical vortex
as an Abrikosov vortex [51].

In the case of vortices induced by an applied current, though, the circularly shaped
magnetic self-field induced by the current can produce a vortex with a ringlike geom-
etry, usually known as closed vortex. This solution was first obtained by Kozlov and
Samokhvalov [52] through the solution of the London equation and was extensively stud-
ied further in Refs. [53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. In these works, the existence,
dynamics and even stability of such closed vortices in the presence of inhomogeneities
were studied for unbounded superconductors or superconducting samples in the shape of
a cylinder. In the latter configuration, due to the matching symmetry between the system
geometry and the magnetic self-field produced by the current, a vortex penetrates the
sample already in the form of a closed vortex. Recently, these closed vortices were also
shown to exist in a more complex geometry, such as a superconducting torus. [63]

Closed vortices were also investigated in different physical systems. For instance,
the formation of closed vortices was investigated in Josephson junctions submitted to an
external current [64], where it was shown that Josephson vortices can exist as vortex loops
and possible mechanisms for their experimental detection were proposed. In what regards
the Abrikosov closed vortices, their short life time makes their experimental observation
a challenging task, not accomplished so far.
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Figure 1 – Schematic view of the system under consideration: an infinitely long super-
conducting sample of width ly and thickness lz; only one unit cell of length lx
is shown. The transport current is applied in the x direction. The encircling
lines illustrate the line fields of the self-field produced by the current. Two
defects are introduced at the border of the sample (black spots), in order to
facilitate nucleation of v-av pairs.

Within the framework of the microscopic theory of superconductivity, Fyhn and
Linder [65] have recently proposed an experimental setup based on STM measurements
for the direct observation of such closed vortices. In what follows, we propose two new
methods for the indirect experimental observation of the closed vortices, which relies on
the magnetic field produced by them.

In this chapter, the physics of closed vortices is studied in a different system
than what is commonly used in the literature of this topic. We investigate how closed
vortices are emerge and get annihilated in a superconducting film driven by an external
transport current. We notice that, unlike previous works, our system geometry does not
favor the creation of a closed vortex by matching the current self-field profile. In the
present case, the closed vortex is formed due to the inhomogeneous action of the applied
current in different parts of the vortex line. By investigating the vortex dynamics in
three-dimensional superconducting films, we show that, for appropriate values of the film
thickness and the Ginzburg-Landau parameter κ, a closed vortex emerges in the process of
annihilation of a vortex and an antivortex pair (V-Av pair). As we discuss in the following,
when approaching one another, the vortex line and the antivortex line combine, forming
a closed loop. After its formation, the loop assumes the form of a quasi-ellipse, with its
aspect ratio gradually decreasing, until the collapse of the loop at its center. For thick
films, the loop is able to take the form of a circle before being destroyed.

The outline of this chapter is as follows. In Sec. 3.2 we present our model and the
numerical method we used in order to solve the generalized Ginzburg-Landau equations
[66, 67]. In Sec. 3.3 we present and discuss the results obtained in our simulations. Finally,
we present our concluding remarks in Sec. 3.4.
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Figure 2 – The magnetic field profile in the vertical plane x = 0 (parallel to the yz

plane): for better visualization purposes, the arrows are not in real size; the
rectangle inside is a cross section of the superconductor; this picture is for
κ = 1, ly = 8ξ, lz = 3ξ; the value of the current density is Ja = 0.26JGL

just before the critical current density Jc1 = 0.27JGL. The vortex (antivortex)
nucleates on the right-hand side (left hand-side) of the figure.

3.2 Theoretical Model
To investigate the dynamics of our system, we use the generalized time dependent

Ginzburg-Landau (GTDGL) equation which is more suitable to describe the resitive state
of dirty superconductors in the non-equilibrium state [66, 67]. In dimensionless units this
equation is given by

u√
1 + γ2|ψ|2

[
∂

∂t
+

1

2
γ2
∂|ψ|2

∂t

]
ψ =

= (∇− iA)2 ψ + ψ(1− |ψ|2), (3.1)

coupled with Ampère’s law
Σ
∂A
∂t

= Js − κ2∇× h, (3.2)
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Figure 3 – Color maps of the superconducting Cooper-pair density, |ψ|, for κ = 1, lz =
3ξ, and Ja = 0.27JGL throughout the plane x = 0: (a) a v-av pair of curved
vortices; on the left hand-side (right hand side) is the antivortex (vortex);
(b) a combination of a vortex and an antivortex producing a closed vortex;
(c) a closed vortex diminishing its radius; (d) a closed vortex shrinking down
at the center. The dark strips on both sides are due to the defects. These
pictures correspond to the same region highlighted in Fig. 2.

where
Js = Im

[
ψ̄(∇− iA)ψ

]
(3.3)

is the superconducting current density.

Here, the temperature is in units of the critical temperature Tc; the order pa-
rameter ψ is in units of ψ∞(T ) =

√
α(T )/β, where α and β are two phenomenological

constants; the distances are measured in units of the coherence length ξ(T ); the vector
potential A is in units of ξHc2(T ), where Hc2 is the upper critical field; the local magnetic
field h = ∇×A is units of Hc2(T ); time is in units of the Ginzburg-Landau characteristic
time τGL = πh̄/8kBTu; the material dependent parameter γ = 2τE∆0/h̄, where τE is the
inelastic electron-collision time, and ∆0 is the gap in the Meissner state; the constant
Σ = 4πσD/c2ξ2(T ), where D is the diffusion coefficient and σ is the normal state electri-
cal conductivity; κ = λ(T )/ξ(T ) is the Ginzburg-Landau parameter, where λ(T ) is the
London penetration depth; and finally, the constant u is equal to 5.79, which is derived
from first principles [66].

Taking into account the gauge invariance of the GTDGL equations under the
following transformations:

ψ′ = e−iχψ,

A′ = A −∇χ,

φ′ = φ+
∂χ

∂t
, (3.4)
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Figure 4 – The same as in Fig.3 for lz = 1.6ξ and Ja = 0.30JGL.

where χ is an arbitrary scalar function therefore, we conveniently use the Weyl gauge [68]
in which the scalar potential is constant and equal to zero.

In this chapter, the system under consideration consists of a infinite supercon-
ducting film carrying a transport current, as illustrated in Fig. 1. For the inclusion of
the transport current in our numerical simulations, we consider the following scenario.
The superconducting film is driven by an external electric field which sustains a DC cur-
rent along the x direction given by Ja = Jax̂. In the normal state, the system vector
potential has only the x component. In the superconductor state, we separate the total
vector potential as a combination of the normal state vector potential and the contribu-
tion coming from the diamagnetic currents that tries to expel the external field from the
superconductor interior. Mathematically, in Eqs.3.1-3.3 we write:

A = A0 + A1, (3.5)
h = h0 + h1, (3.6)

where A0 and h0 satisfy the following equations:

κ2∇× h0 = Jax̂, κ2∇2A0x = −Ja . (3.7)

To obtain a closed expression for this field, we start by writing the Biot-Savart law:

h0(r) =
1

4πκ2

∫ J(r′)× (r − r′)
|r − r′|3 d3r′ . (3.8)

Using J = Jax̂, we have that:

J(r′)× (r − r′) = Ja(y − y′)ẑ − Ja(z − z′)ŷ , (3.9)

substituting this result in Eq. 3.8, we have:

h0(r) =
Ja

4πκ2

∫ d/2

−d/2

∫ w/2

−w/2

∫ ∞

−∞
dz′dy′dx′

[
ẑ(y − y′)

R3
− ŷ(z − z′)

R3

]
. (3.10)

where R =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]1/2.
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!

Figure 5 – The panels show four cuts of the current distribution of the closed vortex
throughout the vertical plane y = 0. The radius of the closed vortex diminishes
from (a) to (d).

The solution of this integral follows straightforwardly and the two non-zero com-
ponents of the magnetic field can be written as:

hy0(r) = Ja
4πκ2

[
− (y − w/2) ln

[
(y−w/2)2+(z+d/2)2

(y−w/2)2+(z−d/2)2

]
+ (y + w/2) ln

[
(y+w/2)2+(z+d/2)2

(y+w/2)2+(z−d/2)2

]
+(3.11)

+2(z − d/2) arctan
( (y−w/2)
(z−d/2)

)
− 2(z − d/2) arctan

( (y+w/2)
(z−d/2)

)
− (3.12)

−2(z + d/2) arctan
( (y−w/2)
(z+d/2)

)
+ 2(z + d/2) arctan

( (y+w/2)
(z+d/2)

)]
, (3.13)

hz0(r) = Ja
4πκ2

[
(z − d/2) ln

[
(y+w/2)2+(z−d/2)2
(y−w/2)2+(z−d/2)2

]
− (z + d/2) ln

[
(y+w/2)2+(z+d/2)2

(y−w/2)2+(z+d/2)2

]
−(3.14)

−2(y − w/2) arctan
( (z−d/2)
(y−w/2)

)
+ 2(y − w/2) arctan

( (z+d/2)
(y−w/2)

)
+ (3.15)

+2(y + w/2) arctan
( (z−d/2)
(y+w/2)

)
− 2(y + w/2) arctan

( (z+d/2)
(y+w/2)

)]
. (3.16)
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The full three-dimensional GTDGL equations are here numerically solved for a
system consisting of an infinite superconducting film with finite thickness and width (see
Fig. 1). To simulate the infinite film, we divide it into unit cells with dimensions (lx, ly, lz).
The demagnetization effects are taken into account by considering this unit cell inside
a simulation box (not shown in Fig. 1) of dimensions (lx, Ly, Lz), where (Ly, Lz) are
sufficiently larger than (ly, lz) so that the local demagnetizing field h1 vanishes far away
from the superconductor.

To ensure that no supercurrent flows out of the superconductor, the following
boundary conditions must be fulfilled:

n̂ · (∇− iA0 − iA1)ψ = 0, in ∂Ωsc, (3.17)
∇× A1 = 0, in ∂Ω, (3.18)

where ∂Ωsc and ∂Ω stand for superconducting and simulation box surfaces, respectively.

To introduce inhomogeneity in the superconducting state, we introduce deffects
in our system, depicted in Fig. 1 by the two black spots. Their presence induces the
nucleation of vortices and antivortices in each side of the stripe.

3.3 Results and Discussion

3.3.1 Parameters and Methodology
In the simulations, we have fixed some parameters and varied others as follows.

The length and width of the unit cell are fixed as lx = 12ξ and ly = 8ξ. The thickness of
the sample varied from lz = 1ξ to lz = 3.6ξ in increments of 0.2ξ. We use κ = 1/

√
2, 1,

√
3

for each set of values of lz. The grid space used is ∆x = ∆y = 0.2ξ and ∆z = 0.1ξ. The
size of the simulation box was chosen sufficiently large in order to satisfy the boundary
conditions (3.18); we use ly = 16ξ and lz = 12ξ. The dimensions of the defects are
ax = ay = 0.2ξ. The range 10 ≤ γ ≤ 20 is suitable for most metals like Nb [66, 67, 69];
we used γ = 10.

Let us explain how we calculate the IV (current-voltage) and IR (current-resistance)
characteristics, that are the measurable quantities in the resistive state. In the Weyl gauge,
the electrical field is given by E = −∂A/∂t, so, assuming that the voltage is measured
between electrodes at z = 0 that cover the width of the film, the voltage across a unit cell
is:

U(t) = − 1

ny − 1

ny∑
j=2

∫ lx/2

−lx/2
Ex(x, yj, 0)dx

=
1

ny − 1

ny∑
j=2

∫ lx/2

−lx/2

∂Ax(x, yj, 0)

∂t
dx, (3.19)
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Figure 6 – (a) Voltage across the z direction as a function of the thickness of the sample
for three values of κ: the value of Ja for each case corresponds to the first
critical current density when the resistive state sets in. The highlighted dots
are the critical lz,c values for which the v-av pairs combine to make a closed
vortex. (b) The derivative of the voltage: the dots separate the two regimes
of straight to curved vortices; the inflection points coincide with lz,c.

where ny = ly/∆y, and yj = (j−ny/2−1)∆y for are the y coordinates of the mesh points.
The voltage is then calculated as a time average of U(t). We have:

V =
1

T

∫ T

0

U(t) dt, (3.20)

where T is the time corresponding to an appropriate number of oscillations of U(t).

The applied current density was adiabatically increased in steps of ∆Ja = 0.01JGL
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One 
v-av 
pair 
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Two v-av pairs 
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Figure 7 – IV (blue line) and IR (red line) characteristic curves, respectively, for κ = 1

and lz = 3ξ. The Meissner state (full superconductivity) survives up to
Ja = Jc1 = 0.27JGL. Above this current density, the resistive state sets in.
The resistive state splits into two phases. In one of them the vortex and the
antivortex nucleate only at the defects on the border of the superconductor. In
the second phase, another set of v-av pairs nucleates at the frontiers between
unit cells. The second jump in the IV characteristic is the signature of this
crossover. The insets illustrate this scenario through the modulus of the order
parameter in the xy plane (z = 0 plane).

from the Meissner state until the superconductivity was fully destroyed. In the resistive
state, we moved from value of Ja to Ja+∆Ja only after the voltage U(t) became periodic,
which is the same periodicity with which the v-av pairs are formed and annihilated. When
multiple nucleations of v-av (vortex-antivortex) pairs are present, the voltage looses its
periodicity, and therefore we change the value of Ja only after 220 oscillations of U(t) in
order to obtain a more accurate value of the time averaged voltage. The results of all
simulations are presented in the following Subsections.
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3.3.2 Field Profile, Closed Vortex, and Current Distribution
In Fig. 2 we illustrate the vector field profile at x = 0 plane (in the middle of the

unit cell, where the defects are located). The local field has symmetry as if the current
density was uniform. Due to the geometric symmetry and the demagnetization effect, the
local magnetic field is larger near the surface of the superconductor, and decreases deep
inside. As can also be observed, the field is larger on the lateral sides of the sample. In
this figure, we show the vector field for a value of the current density just before the
first critical current Jc1 = 0.27JGL. Therefore, once the resistive state sets in, it is on the
lateral sides that the vortex and the antivortex sprout, move to the center, and finally
annihilate each other at the center of the sample. Then, a periodic collapse of v-av pairs
is established.

Next, we discuss the morphology of a closed vortex in the resistive state. The first
works about closed vortices were conducted on long current-carrying superconducting
cylinders, so that the vortex follows the geometry of the sample since from the surface
until it collapses at the center [53, 70]. In the present scenario, we deal with a film of
rectangular cross section. Thus, before the closed vortex is formed, two curved vortices
(a vortex and an antivortex) nucleate in opposite sides of the sample (see panel (a) of
Fig. 3) and move toward the center. Then, as they encounter each other, their ends join
together forming a closed vortex (panel (b)). Once this ringlike vortex is formed, its
radius starts decreasing (panel (c)) until it collapses at the center. After the transition
from the Meissner state to the resistive one, the process is repeated periodically until
superconductivity is suppressed throughout the sample.

It is conceivable that the closed vortex can exist for any thickness of the film,
but for small values of lz is very elongated when the ends of the v-av pair meet. In our
simulations, we do not have sufficient resolution to detect a closed vortex for any lz. Indeed,
in Fig. 4 we show four panels of the color maps of the superconducting Cooper-pair density
for lz = 1.6ξ. As we can see, the shape of the closed vortex is much more elongated than
for the previous case lz = 3ξ of Fig. 3. For κ = 1, and thickness below lz = 1.6ξ, we do
not observe any closed vortex; the v-av pair remains straight lines, from the nucleation of
the vortex and the antivortex on the surfaces, until the pair is annihilated at the center
of the sample. The formation of a closed vortex depends on the sample thickness because
the current and the magnetic field concentrate near the surface of the superconductor, on
a scale of the order of the London penetration depth. Therefore, for thicker samples, the
ends of a vortex line are subjected to stronger Lorentz force and to a stronger horizontal
magnetic field that facilitate the formation of a closed vortex.

Let us now discuss the current distribution of a closed vortex. When both curved
vortex and antivortex touch their ends on the upper and lower surfaces, z = +lz/2 and
z = −lz/2, respectively, they combine in order to make a single closed vortex. This new
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vortex looks like a toroid with the superconducting currents flowing around its core. Fig. 5
exhibits four cuts of the toroid in the xz plane for lz = 3ξ. As it can be seen, the currents
in the internal parts of the toroid flow in the same direction for both the upper and lower
segment of the closed vortex. Therefore, all v-av pairs opposedly positioned in the toroid
attract one another, causing the closed vortex to collapse at the center of the sample.

3.3.3 Straight to Curved Vortex Crossover, and (IV,IR) Characteristics
As we mentioned previously, as the thickness of the sample is increased, there is

a crossover between straight to curved v-av pair. In what follows, we show a consistence
between the criterion based on the aspect ratio of the vortex (antivortex) and an important
physical quantity, namely, the voltage across the z direction on the lateral side of the film;
by aspect ratio, we mean the distance between the center of the vortex and the antivortex
along the y direction when their tips first touch each other. For this purpose, we calculate
the time average of the following voltage:

U(t) = − 2

nx

nx∑
i=nx/2

∫ lz/2

0

Ez(xi, ly/2, z)dz

=
2

nx

nx∑
i=nx/2

∫ lz/2

0

∂Az(xi, ly/2, z)

∂t
dz, (3.21)

where nx = lx/∆x, and xi = (i − nx/2 − 1)∆x for all {i = 1, 2, . . . , nx + 1} are the x
coordinates of the mesh points. Here, we have not considered the branch −lz/2 ≤ z ≤ 0.
By symmetry, had we included this contribution, the voltage would vanish.

When a closed vortex appears, we will have a larger contribution for the current
flowing in the vertical direction, and consequently an increase in the voltage. For a fixed
value of κ and current density Ja, we determine the voltage for several values of lz. We have
done this for three distinct values of the Ginzburg-Landau parameter. The respective value
of Ja is chosen to correspond to the critical current density Jc1 for the lowest thickness,
lz = 1ξ. The results are summarized in Fig. 6. In panel (a) we present the voltage as a
function of the thickness of the film. We find that, at a certain point, which we denote by
lz,c, there is a change of the behavior of the V (lz) curves. These points are highlighted in
panel (a). They signal a crossover from linear to curved v-av pairs.

In order to make sure that this special point is correlated to the straight-to-
curved vortex crossover, we calculate the derivative dV (lz)/dlz for the three values of
κ (see panel (b)). As can be seen, the derivatives have an inflection point which are high-
lighted in panel (b). These points correspond to lz,c. We find the following critical values,
lz,c = 1.4ξ, 1.6ξ, 1.8ξ for κ = 1/

√
2, 1,

√
3, respectively. We must emphasize that, first we

determine the value of lz,c by inspecting the aspect ratio of the curvature of the vortex.
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Figure 8 – Color maps of the superconducting Cooper-pair density, |ψ|, for κ = 1, lz =
4ξ, and Ja = 0.26JGL throughout the plane x = 0: (a) an av nucleates in
the left edge of the sample and moves towards the opposite side; (b) the
ends of the av touch the y = ly/2 plane and form a half-closed vortex; (c) a
half-closed vortex diminishing its radius; (d) the half-closed vortex shrinking
down.

Second, we check if the result is in agreement with the inflection point of dV (lz)/dlz. For
all the three cases mentioned above they coincide.

Now we discuss the transport properties of the superconductor. The IV and IR
characteristics are presented in Fig. 7 for κ = 1 and lz = 3ξ. As we increase the applied
current density, the system becomes unstable to the penetration of v-av pairs. When Ja

achieves the value Jc1 = 0.27JGL the superconductor goes to the resistive state, where
a periodic formation v-av pairs occurs. Notice that Jc1 is smaller than the depairing
current density JGL. This is a consequence of the defects deliberately introduced at the
border of the superconducting film. If we further increase Ja, a second jump appears
in the IV curve at Ja = 0.575JGL. This is an indication that other two adjacent v-av
pairs around the central one are nucleating (see insets). This is in correspondence with
the experimental observations of multiple penetrations of kinematic vortices in Sn film
by Sivakov et. al. [71]. Finally, when the current density reaches the value Ja = Jc2 =

1.155JGL the superconductor goes straight to the normal state. We believe that for larger
unit cells, additional jumps in the IV curve would occur.
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3.3.4 Single Defect (Half-Closed Vortex)
We also have considered a single defect in the middle of a unit cell (in the middle of

front edge in Fig. 1). In this configuration, only an antivortex nucleates on the y = −ly/2
surface. Once the antivortex nucleates at y = −ly/2 it moves directly towards the opposite
side. As can be seen from Fig. 8, as the antivortex approaches the other side of the sample,
it becomes significantly curved (see panel (a)). When it reaches the surface y = ly/2,
surprisingly, it does not escape the sample. Instead, its ends touch the surface giving
rise to a half-closed vortex (see panels (b) and (c)). Then, it diminishes its ratio until it
collapses (see panel (d)).

Due to its intrinsic nature, it is very difficult to observe experimentally the closed
vortex. In addition, both the closed and half-closed vortex are very unstable. Therefore,
we require an indirect method that signals either a v-av or a single half-closed vortex
curves. Having this in mind, we propose a setup to detect the curvature of the v-av pair
when it gives rise to a closed vortex with a non vanishing aspect ratio. Instead of doing
this for a closed vortex, which is formed inside the sample, we think it should be much
easier for a half-closed vortex, since its collapse occurs on the surface. For this purpose,
we calculate the time average of the of the magnetic flux on the lateral side of the film.
In order to calculate the magnetic flux, we focus in a small region where the antivortex
tips touch the plane y = ly/2, although we could extend it throughout the whole lateral
side of the unit cell. We evaluate the following equation:

Φ(t) =

∫ lz/2

0

∫ ξ

−ξ
hy(x,±ly/2, z) dxdz. (3.22)

Here, the minus sign stands for the left edge where the antivortex nucleates, and the plus
sign is for the opposite one where the antivortex ends touch the surface. We consider only
half of the lateral edge, otherwise the total flux would vanish.

Fig. 9 presents the results for the time averaged magnetic flux by using the same
parameters as those used in Fig. 8. As can be clearly seen, until the transition to the
resistive state, the flux is approximately the same through both surfaces y = ±ly/2.
Nevertheless, once the resistive state sets in, they become different as much as ∆Φ̄ ≈
0.09ξ2Hc2 ≈ 0.02Φ0. This is signaling that the antivortex is piercing the y = +ly/2

surface. Therefore, for this to happen, the antivortex necessarily has to bend.

Since the creation and annihilation of the half-closed vortex is a dynamical process,
the flux evolves periodically. The AC magnetic flux can be seen in the inset of Fig. 9. The
period of the AC signal depends on the applied current density. For Ja = 0.26JGL we find
that the period is τ ≈ 0.03 × 104tGL. For low-Tc materials like Nb films [69], tGL ≈ 6.72

ps. This produces τ ≈ 2 ns, which is in the GHz frequency range.

As we can see, the measurement of the difference between the time averaged mag-
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Figure 9 – The main panel presents the time average of the magnetic flux, Φ̄, across
the surfaces defined in Eq. 3.22; the black points correspond to the beginning
of the resistive state. The inset shows the magnetic flux, Φ, as a function of
time. The parameters used were κ = 1, lz = 4ξ, and Ja = 0.26JGL.

netic flux threading at each plane, as displayed in Fig. 9, can be an indirect method for the
experimental detection of a closed vortex. Such measurement is experimentally feasible
by using the recently developed nanoSQUIDs [72, 73, 74], which are capable of detecting
the variation of the flux produced by the closed vortex in the time and length scale we
used in our computations.

We must emphasize that for thin superconductors, the measurement of the flux in
the region prescribed in the above setup can be experimentally challenging. For this reason,
we also present another indirect method for the detection of a closed vortex. Fig 10 shows
the difference between the averaged magnetic flux calculated at the lateral sides of our
superconductor as a function of the applied current density, for different superconductor
thicknesses. In contrast with the previous case, here the flux is calculated from the bottom
of the superconductor up to a height well above the sample surface. The flux is evaluated
across a vertical rectangular surface, located a coherence length away from the lateral
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Figure 10 – Difference between the average magnetic flux on both sides of the sample
through two vertical circuits positioned on the planes y = ±(ly/2 + ξ). The
domain of the circuits is given by {−ξ ≤ x ≤ ξ, −lz/2 ≤ z ≤ Lz/2}. The
value of Lz was chosen such that the area of the circuit above the z = lz/2

surface is the same for all thicknesses lz. The points just before the onset
of the resistive state are highlighted in black.

surface. This makes the proposed experiment much more feasible.

The black dots in Fig. 10 represent the onset of the resistive state for each thickness.
We are interested in current densities slightly above these values. In this region, the
antivortex moves through the whole sample, being expelled at the other side. Due to its
curvature, the antivortex produces a larger magnetic flux in the plane which it is moving
into, increasing the flux difference between each plane. Since the curvature increases with
the film thickness, this difference also increases with the sample thickness, as shown in
Fig. 10. Nevertheless, for large values of the current density, a vortex also penetrates the
superconductor at the opposite side, with the pair being annihilated inside the sample,
reducing the impact of the curvature in the flux. The penetration of this vortex becomes
easier as the superconductor thickness increases, which explains why the flux difference
for lz = 4ξ is smaller than for lz = 2ξ or 3ξ at high current densities, for example. In
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summary, by comparing the magnetic flux difference, at the onset of the resistive state,
for films with different thicknesses, we can clearly demonstrate the existence of the half-
closed vortex. Given the inherent complexity for the direct observation of a closed vortex,
our indirect method brings a new possibility for the first detection of such objects.

3.4 Concluding remarks
To summarize, we have shown that the combination of the flux lines of a vortex

and an antivortex during their annihilation gives origin to a closed vortex loop. As we
show here, the formation of the closed vortex depends on how easily the flux lines can be
bent due to the action of the applied current, with this bending increasing with the super-
conducting film thickness and decreasing with the Ginzburg-Landau parameter κ. Since
the motion and annihilation of vortices are highly dissipative processes, understanding
their behavior is of fundamental importance to the design of electronic devices.

Our findings suggest a new method to experimentally observe a closed vortex.
As discussed here, closed vortices can be indirectly detected by the measuring the flux
produced by their stray fields. We emphasize that the recently developed nanoSQUIDs are
capable of performing such measurements in the time and length scales that our system
requires.
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4 Harnessing the superconducting diode ef-
fect through inhomogeneous magnetic
fields

4.1 Introduction
One of the most important topics of both fundamental and applied research on

electronic system is the search for faster and efficient devices, which would allow increased
performance in a wide range of applications. One of such devices is the superconducting
diode [75, 76], which has the practical advantage of presenting all the functionalities of a
regular semiconductor diode while also being able to transport current without electrical
resistance.

The fundamental characteristic of the superconducting diode is the lack of inver-
sion symmetry for the current flow, which can be expressed as I+c ̸= I−c , where I±c is the
critical current that marks the emergence of a finite resistance for a given current polarity.
The first idea for the realization of a superconducting diode focused on applying a pinning
potential that breaks the inversion symmetry of the vortex lattice [77, 78]. In this manner,
an alternate current would trigger vortex motion and the emergence of the resistive state
for one current polarity, while the system would remain perfectly superconducting for
the other one. This idea was executed experimentally in various different systems, with
the inversion pinning landscape coming from regular arrays of asymmetric dots and an-
tidots [79, 80, 81], asymmetric distributions of symmetric dots and antidots [82, 83, 84],
regular arrays of nanosized magnetic dipoles [85, 86], and asymmetric weak-pinning chan-
nels [87].

The interest in the superconducting diode physics has witnessed a new increase in
the recent years, with the emergence of a diverse amount of systems capable of displaying
the diode effect. As examples of such systems we can cite heterostructures composed
of superconducting materials and topological insulators or ferromagnetic materials [88,
89, 90, 91, 92, 93, 94], different superconducting systems with an applied magnetic field
[95, 96, 97, 98, 99, 100, 101, 102], and even superconducting systems with no external
field [103, 104, 105, 106]. Superconducting Josephson junctions have also been used to
obtain the diode effect [107, 108, 109, 110, 111, 112], relaying on the asymmetric current-
phase relation of specific junctions.

Here, it is interesting to define two types of superconducting diodes. The first of
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them is the intrinsic superconducting diode, which occurs when an asymmetry inherent
to the superconducting material leads to a different critical current for each polarity.
The second is the vortex-based superconducting diode, briefly discussed above, where the
current necessary to induce vortex motion in the superconductor is polarity dependent.
Due to its nature, vortex-based diodes display a much higher degree of controllability
than the intrinsic ones, once the critical currents for the vortex motion can be designed
by a series of techniques. Moreover, one should note that in experimental conditions,
vortex-based and intrinsic diodes can be hard to distinguish [113]. This occurs because
the critical depairing current is always smaller than the theoretical one and vortex motion
can trigger the onset of the normal state.

For vortex-based diodes, the dissipation emerges from the flux-flow and the super-
conducting state is not totally suppressed. Once the flux-flow resistance is smaller than
the its normal state counterpart, the obtained DC voltage output is relatively small. A
much more advantageous scenario occurs for diode systems where a completely dissipa-
tionless superconductor for one current polarity transits directly to the normal state when
the polarity is switched. Hereafter, we will refer to these two distinct diode mechanisms as
flux-flow dominated (FFD) and normal state dominated (NSD). Recently, Hou et. al. [90]
demonstrated a highly efficient diode effect in superconducting stripes by introducing
asymmetric conditions for vortex penetration at the system edges. In other words, there
is a transition from FFD to NSD. In their work, however, there is no clear explanation
for such transition. Ref. [114] possibly gives some insight to the physics. In this work,
the authors studied the diode effect in a nonostructured superconducting stripe. As they
show, the heat dissipated by the fast moving vortices i.e. the formation and propagation
of hot spots, drives the system to the normal state, thus providing an explanation to the
connection between FFD and NSD scenarios.

With these recent results, the necessity of a better understanding on the heating
role in the emergence of the diode effect becomes evident. Moreover, the possibility of
FFD conversion to NSD by heating effects suggests that a careful design of the vortex
dynamics and the subsequent heat diffusion can serve as a platform for the optimization
of diode efficiency ϵ = |I−c − I+c |/(I−c + I+c ).

The focus of the present chapter is to study the interplay between the FFD and
the NSD mechanisms in superconducting stripes subjected to asymmetric external mag-
netic fields. We do so by the numerical solution of the time-dependent Ginzburg-Landau
equations coupled to the heat diffusion equations, for external field profiles that goes from
fully positive to perfect antisymmetric. As we show, while both types of flux profile leads
to the FFD scenario, the antisymmetric one displays the larger efficiency, with values
surpassing 70%. As the magnitude of the transport current increases, vortex-antivortex
(v-av) annihilation sends the system to the normal state, due to the hot spots formation
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Figure 1 – Schematic view of a superconducting film (green) subjected to asymmetric
field profiles Bz(y) induced by: (a) an asymmetrically lying ferromagnetic
film (orange) with off-plane magnetization M; (b) the same as (a) but with
in-plane magnetization and symmetric arrangement of the bilayer; and (c)
currents applied onto lateral superconducting stripes (blue). J1 and J2 can
be adjusted to generate different field profiles. Here, setting J2 = J1 = −J x̂
emulates Bz(y) similar to that induced by the magnet in (b). In all cases,
an alternating current Jac applied parallel to x induces nonreciprocal vortex
penetration and motion.

at the collision. We also show that reducing the heat removal strength accelerates this
process, thus facilitating the conversion of FFD into NSD and enhancing the diode effi-
ciency. Such results can help the physical interpretation of large efficiencies observed in
recently discovered superconducting diode systems.

The organization of this chapter is as follows. In Sec. 4.2 we define our system and
introduce the theoretical formalism used to study it. We present our results and discussion
in Sec. 4.3 and our conclusions in Sec. 4.4.

4.2 Theoretical Formalism
The time dependent Ginzburg-Landau currents can be written, in dimensionless

units as [66, 67]:
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u√
1 + γ2|ψ|2

[
∂

∂t
+

1

2
γ2
∂|ψ|2

∂t

]
ψ =

(∇− iA)2 ψ + ψ(1− T − |ψ|2), (4.1)

σ
∂A
∂t

= Im
[
ψ̄(∇− iA)ψ

]
− κ2∇×∇× A, (4.2)

where ψ is the superconducting order parameter, A is the vector potential and σ is the
normal conductivity. We also define the coherence length ξ(0), the penetration length λ(0)
and the Ginzburg-Landau parameter κ = λ(0)/ξ(0). In all calculations, the constants u
and γ are fixed as 5.79 and 20, respectively. In these equations, lengths are in units of
ξ(0), T in units of the critical temperature, Tc, time in units of tGL = πh̄/8ukBTc, ψ in
units of the field-free order parameter at T = 0, ψ∞(0), A in units of ξ(0)Hc2(0), with
Hc2(0) the upper critical field at T = 0, current densities are in units of j0 = σV0/ξ(0)

and voltage in units of V0 = h̄/2etGL.

The effects of heat dissipation are introduced through the heat diffusion equation
[115, 116]:

ν
∂T

∂t
= ζ∇2T + σ

(
∂A
∂t

)2

− η(T − T0), (4.3)

here, where ν, ζ, and η are the thermal capacity, thermal conductivity of the material,
and the heat transfer coefficient of the substrate, respectively, with T0 being the bath
temperature. In what follows, we set ν = 0.03, ζ = 0.06 and varied η from 2.0× 10−5 to
2.0× 10−3.

Panels (a) and (b) of Fig. 1 show two possible methods to the inclusion of the in-
homogeneous field in the system. Here, we use a superconductor/ferromagnet heterostruc-
ture and the inhomogeneous field comes from the magnetization of the ferromagnet. We
note that the system depicted in panel (b) was recently studied in Ref. [90]. In this chapter,
we investigate a new system, presented in panel (c), which consists a central supercon-
ducting stripe under an AC current drive with two coplanar wires carrying a DC current
being responsible for the creation of the inhomogeneous field profile. In the configurations
shown in panels (b) and (c) display the particular behavior that their field profile matches
the profile of the self-field generated by the AC current for one polarity but opposes it
for the other one. In what follows, we discuss that this pattern leads to a larger diode
efficiency. We choose panel (c) for our investigation of the diode effect, because it provides
a suitable design to manipulate the inhomogeneous field profile through the tuning of the
lateral currents J1 and J2.

In our calculations, the side stripes are defined with a width w = 50ξ(0), a thickness
ds = 5ξ(0) and its separated from the central superconducting film by a distance of
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s = 5ξ(0). The basic calculation of the field produced by two stripes carrying currents is
simple, with its z component being given by:

Hnh(y) =
J1ds
2πκ2

ln
(
−y + w + s+ Ly/2

−y + s+ Ly/2

)
− J2ds

2πκ2
ln
(
y + w + s+ Ly/2

y + s+ Ly/2

)
(4.4)

The central superconductor has width Ly = 200ξ(0) and thickness d = ξ(0). An
AC current Jac(t) = Ja sin(2πt/τ) is applied to this stripe, with τ being the period of
oscillation.

Eqs. (4.1)-(4.3) are solved numerically solely for the central superconducting stripe,
with periodic boundary conditions used along the x direction, with period Lx = 400ξ(0).
For the edges at y = ±Ly/2, we must assure that no supercurrent leaves the system.
This is done by the boundary condition ŷ · (∇ − iA)ψ = 0. For the local temperature,
the following boundary condition is used ŷ · ∇T = 0 [115, 116]. To take into account
the applied AC current [??], the magnetic field obeys the following boundary conditions
hz(x,±Ly/2) = Hnh(±Ly/2)± LyJ(t)/2κ

2.

4.3 Results and Discussion
To carefully investigate the conditions for the occurrence of the diode effect in our

system, we have varied Ja, the magnitude of the applied AC current, and J1 and J2. In our
analysis, we limit the values of J1 and J2 to be lower than 0.52. Here we note that, for the
bath temperature fixed at T0 = 0.96Tc, such currents would destroy the superconducting
state if applied to the central stripe. Thus being, the lateral wires must be composed of a
superconducting material with larger critical temperature and depairing current. For the
remaining parameters, we have used κ = 5 and, unless stated otherwise, τ = τ0 = 105tGL.

4.3.1 Fully Positive Asymmetric Flux Profiles (J1 ̸= 0, J2 = 0)
Let us start our investigation by considering a fully positive field profile coming

from the wires i.e J1 > 0 and J2 = 0 in Eq. (4.4). In Fig. 2, we show the color plot of
time average DC signal VDC as a function of the magnitude of the AC current and the
value of J1. As one can see, by increasing the magnitude of the AC current for a fixed J1,
we get three distinct VDC regions. Namely, we start with a low VDC , obtain a large VDC
value inside the red region of the figure and then go back to a low VDC . Inside the large
voltage region, the values of VDC are ten times as large as the ones in the blue regions
outside this domain. We note that the appearance of two separate islands of large VDC for
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Figure 2 – Phase-diagram displaying the color plot of the output voltage VDC (in units
of V0 = h̄/2etGL) as a function of J1 and the amplitude of the AC current
(both in units of j0 = σV0/ξ(0)). We fix J2 = 0.

small J1 is a purely numerical result, which originates in the step that J1 is being varied.
For a smaller step, the two red regions would be connected.

To help us understand what occurs in each region of the VDC phase diagram, Fig. 3
shows the voltage output (solid blue line) as a function of time for three selected values of
Ja and J1 = 0.26 fixed. The red dashed lines in each panel show the voltage of the system
at the normal state, given by Vn(t) = (JaLx/σ) sin (2πt/τ). Panel (a) depicts a case for
the first region with low VDC , before the red region. As can be seen, the vortex dynamics
in the stripe is never sufficient to completely destroy the superconducting state, with the
system displaying a finite resistance due to the vortex motion. The finite VDC value occurs
due to the presence of the inhomogeneous field. In this case, the external field is stronger
at the top edge of the central stripe, thus nucleating vortices in this region. For positive
current polarity, the AC current self-field is positive at the top edge and negative at the
bottom edge, thus enhancing the inhomogeneous field at its stronger location. On the
other hand, the self-field profile is opposite for negative current polarity, thus diminishing
the external field. This difference leads to an asymmetric vortex dynamics for each current
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(a)

(b)

(c)

Figure 3 – The voltage signal as a function of time (solid blue line) for J1 = 0.26 and
three current values, Ja = 2.20 × 10−3 (panel (a)), Ja = 2.45 × 10−3 (panel
(b)) and Ja = 2.55 × 10−3 (panel (c)). In each panel, the red dashed lines
represent the voltage if the system were in the normal state.

polarity, thus originating the finite DC voltage output.

Panel (b) shows the voltage output as a function of time for one of the cases inside
the red portion of Fig. 3. Here, the origin of the large VDC value obtained becomes clear.
As we can see, for positive current polarity, the heat dissipated by the vortex dynamics is
sufficient to send the system to the normal state for a given time interval. We note that
this behavior is similar to what was found by Ref. [114]. As the magnitude of the AC
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current decreases, superconductivity once again nucleates in the sample and, for negative
current polarity, the normal state is never achieved. This significant asymmetry between
the system dynamics for the positive and negative current polarities leads to the large
VDC observed. The physical origin of the asymmetry between the two halves of the current
period will be discussed later on this Chapter.

For the final case, panel (c) shows the voltage as a function of time for a case
of low VDC that occurs after the red region. As also happened in panel (b), the system
transits to the normal state for positive current polarity. The fundamental difference is
that now the amplitude of the AC current is large enough to trigger a vortex dynamics
that also destroys the superconducting state for negative current polarity. This leads to a
reduction of the asymmetry between the two halves of the current period and a consequent
reduction in the value of VDC , that remains finite, once the system expends more time in
the normal state for positive current polarity.

From Fig. 3, the distinction between FFD and NSD mechanisms in our system
becomes clear. Panel (a) is an example of the vortex diode effect, with the finite DC

voltage output coming from the asymmetric vortex dynamics for each current polarity.
In contrast, panels (b) and (c) represent examples of the superconducting diode effect,
once the finite VDC comes from the asymmetry in the critical currents to the onset of the
normal state in each polarity.

Given that panel (b) presents the interesting case of a superconductor diode with
large VDC , we now analyze with greater detail the vortex dynamics behind such physics.
This is depicted in Figs. 4 and 5, which show the order parameter and local temperature
evolution for each current polarity. Each row in this figure shows the state of the system
at a given instant of time marked by a black circle in Fig. 3(b). Panels (a) and (b) show
the system configuration at t = 0, when the magnitude of the applied AC current is still
zero. As can be seen from panel (a), vortices penetrate the superconductor where the
inhomogeneous field is stronger i.e. at the top surface. The vortex pattern display in this
panel resembles the conformal crystal configuration, shown in Refs. [117, 118]. When the
time evolves and the AC current amplitude becomes finite, vortices begin to move towards
the lower edge (see panels (c) and (d))), while new vortices penetrate at the top edge. This
process of creation and annihilation of vortices dissipate energy, as can be seen from the
temperature plots. The heating causes the local suppression of superconductivity, but for
such small current magnitudes, the heat is promptly removed from the system and the
normal state is never achieved.

At a later instant of time, the magnitude of the AC current increases and its self-
field becomes sufficiently strong to initiate the penetration of antivortices at the bottom
edge (panels (e) and (f)). As they mutually attract, vortices and antivortices annihilates
themselves. Due to the field asymmetry, this occurs near the bottom edge of the super-
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(a)

Figure 4 – Color plot of the order parameter and local temperature difference T − T0

at four different times for parameters corresponding to panel (b) in Fig. 3.
Each line of the figure corresponds to a black circle in the positive current
branch.

conductor. To facilitate the visualization of each object, we have labeled a few vortices
and antivortices with v and av. From the local temperature plot, we can see the hot spots
that result from the v-av annihilation. For even larger AC current magnitudes (see panels
(g) and (h)), the hot spots become supercritical and the heat cannot be removed from
the superconductor at a sufficiently high rate. As a result, the superconducting state is
suppressed in the whole system, only being recovered later, when the magnitude of the
AC current decreases.

For the negative current polarity, the dynamics of the system is different. Exactly
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(a)

Figure 5 – Color plot of the order parameter and local temperature difference T − T0

at four different times for parameters corresponding to panel (b) in Fig. 3.
Each line of the figure corresponds to a black circle in the negative current
branch.

at t = τ/2, the conformal crystal like pattern of vortices is again reestablished (panels
(a) and (b)). As the current becomes finite, the vortices leave the superconductor at the
top edge, while new vortices are created at the bottom one (panels (c) and (d)). Once
the external field is stronger at the top edge, surface barrier for vortex exit is larger,
resulting in a smaller vortex velocity. Simultaneously, the field at the bottom edge is
weaker, which means we have a smaller vortex density than what was obtained for positive
current polarity. These effects diminish the dissipated heat and the hot spots are weaker
(panels (e) and (f)). One can confirm this in panels (g) and (h), where the AC current
magnitude is sufficiently strong to nucleate antivortices in the top edge and trigger the
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Figure 6 – Phase-diagram displaying the color plot of the output voltage VDC (in units
of V0 = h̄/2etGL) as a function of J2 and the amplitude of the AC current
(both in units of j0 = σV0/ξ(0)). We fix J1 = 0.26.

v-av annihilation process, but the dissipated heat is never sufficient to send the system
to the normal state.

4.3.2 Antisymmetric Flux Profiles (J1 = J2)
Although the physical system depicted in Figs. 4 and 5 displays the supercon-

ducting diode effect, the negative current polarity presents a finite resistance. This is in
contradiction to the very aim of a superconducting diode, which is to present the func-
tionalities of a semiconductor diode while allowing the flow of electrical current without
energy dissipation. As we show in the following, one can overcome this by applying a finite
J2, such that the surface barrier for vortex penetration in the negative current polarity
becomes large at a point where the self-field cannot overcome it, thus not allowing vortex
penetration and producing a half-wave rectifier.

The phase diagram of the output voltage VDC as a function of Ja and J2 is shown
in Fig. 6. In these calculations, we have fixed J1 = 0.26. As a first feature, we can cite that
the red region of large VDC its wider when compared to Fig. 2, specially as J2 increases.
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For the perfectly antisymmetric case of J1 = J2 = 0.26, this feature is enhanced, with
the red region being three times wider and VDC twice as large as the results presented in
Fig. 2. Fig. 7 helps us to understand the physics behind these enhancements by showing
the voltage as a function of time for three values of Ja and J1 = J2 = 0.26. The positive
current branch in panel (a) presents a case analogous to panel (a) of Fig. 3, as the voltage
output becomes finite at an instant of time shortly after t = 0. As it was also the case
before, the AC current magnitude is never sufficient to destroy the superconductivity
state. The negative current branch, though, presents a completely new behavior, as the
voltage output is zero for the whole half-period i.e. the system behaves as a half-wave
rectifier.

The behavior of the negative current branch repeats itself in panel (b). Here,
though, the v-av dynamics is capable of completely destroying the superconducting state
for the positive current branch. This onset of the normal state also occurs in the positive
current branch of panel (c). In this case, however, we can see that a region of finite voltage
output appears for negative current polarity. This signals that the AC current self-field
is strong enough to overcome the surface barrier imposed by the inhomogeneous field and
vortices and antivortices penetrate the sample. The three voltage-time curves shown in
Fig. 6 clearly explains the increment in VDC observed for the perfectly antisymmetric
inhomogeneous field profile. As the voltage output for the negative current polarity is
always zero or very small, the asymmetry between the two current halves is much larger
than the one obtained in Fig. 3, thus resulting in the significant DC voltage output. To
conclude, we note that panel (b) presents the desired scenario for a superconducting diode,
once it is able to display a large VDC while maintaining half of the current period free
from dissipation.

4.3.3 Hot Spot Dynamics
Let us now investigate in detail what is the physics behind the destruction of

superconductivity due to vortex dynamics in the positive current branch. In Fig.8 we
show the evolution of the order parameter (left column) and local temperature increment
(right panel) for the positive current polarity of the case depicted in panel (b) of Fig. 7.
Each line in this figure represents a given instant of time.

In panels (a) and (b), we can identify the processes of vortex creation, flow and
annihilation. If we note that the hot spots associated with the v-av annihilation at the
middle of the sample are stronger than the ones emerging from vortex nucleation and flow,
we can conclude that it is v-av annihilation that commands the dissipation of heat in our
system. Thus being, one of the advantages of the perfect antisymmetric inhomogeneous
field profile is that it guarantees the occurrence of v-av collision, once they appear in the
same number and meet at the center of the superconductor. For currents much smaller
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(a)

(b)

(c)

Figure 7 – The voltage signal as a function of time (solid blue line) for J1 = J2 = 0.26

and three current values, Ja = 2.10 × 10−3 (panel (a)), Ja = 2.40 × 10−3

(panel (b)) and Ja = 2.80 × 10−3 (panel (c)). In each panel, the red dashed
lines represent the voltage if the system was in the normal state.

then I+c , the heat removal mechanism is sufficient to remove all the dissipated heat of
the hot spots, which gradually disappears. By comparing panels (b) and (d), one can see
that the three hot spots on the left side of panel (b) are examples of such dynamics. On
the other hand, the mechanism behind the total suppression of superconductivity can
be visualized in the hot spots on the right of panel (d). In this case, heat removal is not
strong enough to completely remove the hot spots. As a consequence, the superconducting
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(a)

Figure 8 – Evolution of the order parameter (panels in the left column) and the temper-
ature increment T − T0 (panels in the right column) before the destruction
of the superconducting state for parameters of panel (b) in Fig. 7. The white
dashed line depicted in panel (a) delineates the superconductor into two dis-
tinct halves, with the magnetic flux being composed by vortices in the top
region and antivortices in the bottom one.

state is locally suppressed in this region, attracting more v-av pairs. This triggers a chain
reaction that leads to the formation of stripes with depleted superconductivity along the
width of the system, as can be seen in panels (e) and (f). Such stripes spread across the
entire system and eventually provoke the onset of the normal state, as depicted in panels
(g) and (h).
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Figure 9 – The voltage signal as a function of time (solid blue line) for a linear current
cycle with J1 = J2 = 0.26 and total sweep time τ = 106tGL). Red dashed
curve represents the normal state voltage. The arrows represent the critical
currents for the complete destruction of the superconducting state (dark blue)
and the onset of vortex motion (orange) at each current polarity.

4.3.4 Diode Efficiency
Once we have identified the physical behavior behind our superconducting diode,

we now investigate the diode efficiency of our system, which is given by ϵNSD = (I−c − I+c ) / (I
−
c + I+c ),

with I±c being the critical current to the onset of the normal state in each current polarity.
We do this by replacing our sine wave AC current by a linear AC current, with period
equal to τ = 10τ0 = 105tGL. This procedure approximates our simulations to real physical
experiments where current is slowly swept. For all simulations presented in this subsec-
tion, we have fixed J1 = J2 = 0.26, thus exploring the most favorable scenarios for our
superconducting diode. The voltage as a function of time for such system is presented in
Fig. 9. In this figure, critical currents I±c are indicated by blue arrows and their values
give a diode efficiency of ϵNSD = 0.124.

Let us now investigate the vortex diode effect. To do this, we define the critical
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currents Icv in Fig. 9 (marked by orange arrows), which mark the onset of the flux flow. The
FFD efficiency is then defined as ϵFFD = (I−cv − I+cv) / (I

−
cv + I+cv) and the values obtained

in Fig. 9 give us ϵFFD = 0.619. Clearly, this value is much larger than ϵNSD. The reason
behind this disparity is the fact that the AC current self-field matches the inhomogeneous
field profile for positive current polarity. This leads to the presence of several vortices and
antivortices in the superconductor, which means that a small applied current is sufficient
to trigger the flux flow. In contrast, the AC current self-field opposes the inhomogeneous
field profile for the negative current polarity. As a consequence, a large current magnitude
is necessary to allow vortex entry and motion. This large difference between the behavior
of each current polarity is the origin of the large ϵFFD obtained. In cases where the system
presents strong thermally activated processes, Icv is not well defined and one should use
ϵNSD as the measure of the diode efficiency.

To facilitate the visualization of the vortex and superconducting diode effect,
Fig. 10 shows the absolute value of the output voltage |V (t)| as a function of the to-
tal applied current |Ia(t)|. Blue and yellow regions highlighted in this figure represent
the superconducting and vortex rectification, respectively, while green region depicts the
overlap between the two effects. Here, the route to optimize the diode efficiency becomes
clear. First, for the negative current polarity, one should increase I−c . This means that
the Bean-Livingston barrier must be as large as possible for negative current polarity.
Simultaneously, for the positive current polarity, I+c must be diminished, or, in other
words, must approach the value of I+cv, anticipating the onset of the normal state due to
the vortex dynamics.

4.3.5 Optimizing Diode Efficiencies: The Role of Heat Removal and Sweep
Rate

Until this point in our analysis, we have kept η = 2 × 10−4 fixed in the heat
diffusion equation. This mimics the behavior of a system with moderate heat removal
efficiency. Now that we know that the heat generated in v-av annihilation is the key
mechanism behind the diode effect, it is natural to assume that the heat removal capability
of our system directly affects the diode efficiency, once it changes the hot spots dynamics.
In Fig. 11, we show ϵNSD and ϵFFD as a function of η, with values representing weak
(η = 2× 10−5) and strong (η = 2× 10−3) heat removal scenarios.

Since for currents near I+cv the heat generated by the slow moving vortices is rather
small, the efficiency of the vortex diode effect weakly depends on η. On the other hand, as
the current increases, the hot spots dynamics becomes more important to the behavior of
the system. In this manner, for large η values, heat removal is strong and the formation
of supercritical hot spots is delayed, thus increasing the current to the transition to the
normal state. For small values of η, the behavior is the opposite and now even a small
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Figure 10 – Top panel shows |V (t)| as a function of |Ia(t)|. Blue and red curves repre-
sent the half period with positive and negative Ja(t), respectively. Solid and
dashed lines represent the regions where |Ia(t)| is being increased and de-
creased, respectively. Yellow and blue background marks the current region
of vortex and diode rectification, with green background depicting the region
where they coexist. Bottom panel shows R(t) as a function of |Ia(t)|, with
the same definitions of the top panel following.

hot spot can be sufficient to destroy the superconducting state, thus approaching I+c to
I+cv. For negative current polarity, though, both I−c to I−cv weakly depends on the value of
η, once the system is free from vortices up to a large applied current and heat diffusion
effects are not so important. Combining the behavior of the positive and negative current
branch described above, lead to a significant increase of ϵNSD from 0.067 to 0.317 as η is
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Figure 11 – Efficiencies of the superconducting, ϵNSD (blue circles), and vortex, ϵFFD

(red circles), diode effects as a function of the heat transfer coefficient η.
Here, we set τ = 106tGL.

reduced from 2× 10−3 to 2× 10−5. This signs to us that, to optimize our diode efficiency,
one must use a substrate with weak heat removal capability.

It is important to mention that our 2D simulations do not take into account the
heat diffusion along the thickness of the sample. If one consider a full 3D system, heat
removal can be even weaker, which could trigger the normal state shortly after the begin-
ning of the flux flow at I+cv. Such mechanism could be behind the diode superconducting
diode investigated in Ref. [90]. In this case, the complete destruction of the superconduct-
ing state would occur due to the vortex and antivortex penetration in the system and the
flux flow region would never be observed.

A quantity that is important from the experimental point of view is the total sweep
time of the applied AC current, τ . In Fig. 12 we show how ϵNSD and ϵFFD changes with
τ . For all cases, η = 2× 10−5 is fixed. One can note that both efficiencies have the same
qualitative behavior i.e. a rapid increase for small values of τ and the tendency to reach
an asymptotic value at large τ . For this case all critical currents (I±c and I±cv) decreases as
τ increases. The in increment in efficiency is due to fact that critical currents at positive
branch decreases more than the ones for the negative polarity. To understand this, note
that small values of τ leads to larger Ic and Icv, because the system has less time to evolve
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Figure 12 – Efficiencies of the superconducting, ϵNSD (blue circles), and vortex, ϵFFD (red
circles), diode effects as a function of total sweep time τ . Here, η = 2×10−5.

to next state.

4.3.6 Optimizing Diode Efficiencies: The Role of the Inhomogeneous Field
Amplitude and Shape

So far in our discussion for the perfect antisymmetric inhomogeneous field profile
we have fixed J1 = J2 = 0.26 and the distance s = 5ξ(0) between the central film and the
lateral stripes. Let us now investigate how diode efficiency changes as the strength and
shape of the magnetic field vary. To do this, we initially fix s = 5ξ(0) and set J1 = J2 = J

and vary the value of J . Calculations are once again carried with a linear AC wave with
time τ = 106tGL and η = 2 × 10−5. The critical currents I±c (blue and red circles) and
I±cv (blue and red dots) are shown in panel (a) of Fig. 13. As one can see, the behavior of
I+cv and I+c is rather simple, as they decrease with J . This is the case because, the larger
the applied field, the larger the number of vortices for the positive current branch, which
leads to a decrease in the necessary current to initiate vortex motion and, consequently,
the onset of the normal state. On the other hand, for negative current polarity, a larger
external field increases the Bean-Livingston barrier for the system, this increasing I−cv and
I−c . But for strong enough values of J , the field becomes too strong and helps in the
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(a)

(b)

Figure 13 – Panel (a) shows the critical currents I+c (blue circles), I−c (red circles), I+cv
(blue dots) and I−cv (red dots) as a function of the current density in the
side stripes J . Panel (b) shows ϵNSD (blue circles) and ϵFFD (red circles) as
a function of J . Top x axis relates J with the value of the inhomogeneous
field at the sample edges He.

destruction of the superconducting state, then diminishing I−cv and I−c . This is the origin
of the non-monotonic behavior of the critical currents for negative polarity.

This non-monotonic and asymmetric behavior leads to the existence of an optimal
value of J at which the diode efficiency is the largest. ϵNSD (blue circles) and ϵFFD (red
circles) as a function of J is shown in panel (b) of Fig. 13. This shows to us that J ≈ 0.36

is the optimal value for the superconducting diode effect, while J ≈ 0.40 maximizes the
vortex diode effect.
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(a)

(b)

Figure 14 – Panel (a) shows the diode efficiency as a function of the separation between
the superconducting film and the lateral wires carrying a current chosen
as to induce He = 0.69Hc2(T ). Panel (b) presents the inhomogeneous field
profile for different values of s/Ly (solid lines) and the self-field profile of the
central superconducting film (black dashed line). All curves are normalized
by the field at the edges.

In our simulations, the inhomogeneous field comes from the current carrying side
stripes. However, we note that the existence of maximum values of ϵNSD and ϵFFD does not
depend on the origin of the field, but solely on its strength. The same qualitative efficiency
behavior could be found, for example, if the external field is produced by the ferromagnetic
material depicted in Fig. 1. To facilitate such analysis, the top x axis in Fig. 13 represents
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the value of the external field magnitude He at the superconductor edge for a given
value of J . As can be seen, in terms of field magnitude, the maximum superconducting
diode efficiency occurs for He ≈ 0.62Hc2(T ) while the vortex diode efficiency presents
its maximum for He ≈ 0.69Hc2(T ). These results serve as a guide for the experimental
realization of optimal superconducting diodes for systems that relay on inhomogeneous
magnetic fields.

Finally, we investigate the role of the inhomogeneous field shape in the behavior of
our system. Different shapes of the external field can be achieved by tuning the separation
s, with small values of s resulting in a field profile more concentrated at the stripe edges,
while large separations lead to a linear field profile (see solid lines in panel (b) of Fig. 14).
We note that, for s/Ly = 0.025, the inhomogeneous field resembles the profile of the stripe
self-field in the absence of vortices. The diode efficiencies as a function of s/Ly is shown
in panel (a) of Fig. 14, where the value of J in each case is chosen such that we have
He = 0.69Hc2(T ) at the film edges. As we can see, the largest efficiency occurs exactly for
s/Ly = 0.025. We can conclude, then, that the optimal diode efficiency can be achieved by
using a inhomogeneous field that most perfectly matches the profile of the stripe self-field,
thus compensating the effect of the applied current in one polarity, maximizing its critical
current.

4.4 Concluding Remarks
To conclude, in this chapter we have investigated the interplay between the dif-

ferent mechanisms of the superconducting diode effect in a superconducting film in the
presence of external inhomogeneous fields. As we shown, such fields are capable of intro-
ducing highly asymmetric conditions for vortex dynamics, thus being excellent candidates
for the design of efficient vortex diodes. As a great advantage, our proposed system does
require complex nanofabrication, with the inhomogeneous field being introduced by two
current carrying wires coplanar to the main superconducting film.

Furthermore, our simulations also review that an external field with a perfect
antisymmetric profile leads to the optimization of the diode effect. This occurs because
such flux profile maximizes the difference in the Bean-Livingston barrier for each current
polarity. For positive current polarity, the profile of AC current self-field matches the
external field, leading to the coexistence of vortices and antivortices in the superconductor.
As the v-av pairs are annihilated at the center of the sample, hot spots are formed and
eventually the system transits to the normal state. On the other hand, for negative current
polarity, the profile of the AC self-field opposes the external flux, which enhances the Bean-
Livingston barrier, protecting the existence of the Meissner state. as we have shown, such
system leads to a half-wave rectifier for a wide range of parameters.
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As a final remark, we have also provided experimental routes for the optimization
of our diode system and other superconducting diodes in general. For instance, we have
shown that the use of substrates with weak heat removal capability enhances the super-
conducting diode efficiency. Also, we demonstrated that the sweep rate of the current or
the frequency of the AC current is important for the final result. Such findings help to
understand and improve the physics of superconducting diode systems.
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5 Stability limits of flux states in two-band
superconducting rings

The existence of different overlapping sheets at the Fermi surface of a supercon-
ductor gives rise to the so called multiband superconductivity, characterized by more
than one condensate. [119, 120] Since several of the novel superconducting materials that
emerged in the last years are multiband superconductors, this topic has seen a revival
of its interest in the literature, after beeing discussed for the first time in the late fifties.
[121, 122] As examples of such materials, we can mention MgB2, [123, 124] iron pnictides,
[125] NbSe2, [126, 127] iron arsenides, [128] among others.

The presence of different condensates has also rendered multiband superconductors
of great interest due to their magnetic properties. One of them is the possibility of non-
monotonic vortex-vortex interaction, with short-range repulsion and long-range attraction,
arising through the competition between the coherence length of each condensate. [129]
Such interaction leads to the formation of vortex clusters, separated by Meissner state
regions in bulk specimens. [129] This vortex matter behavior is known as type-1.5 super-
conductivity [130] and has raised a great amount of discussion. [131, 132, 133, 134, 135]
Recently, vortex stripes formation have been experimentally observed in the heavy fermion
superconductor UTe2. [136]

Another phenomenon observed in multiband superconductors is the possibility of
vortices carrying a non-integer multiple of the flux quantum. [137, 138] Such objects can
occur either when the phase winding of different condensates are not equal or when
the phase singularities of each condensate occur at different points inside the super-
conductor. Fractional vortices have been extensively theoretically studied in the past
[139, 140, 141, 142, 143, 144, 145, 146, 147, 148] and recently experimentally observed
in different superconductor materials. [149, 150, 151] These recent experimental break-
throughs have renewed the interest in understanding how the presence of multiple order
parameters influences the behavior of various superconducting systems. In this chapter,
we explore two-band superconductor rings under an external magnetic field and estab-
lish the stability boundaries between different flux states. Specifically, we determine the
critical flux at which the winding number of one or both order parameters changes.

It was also shown that the multiband superconductors have interesting properties
in the presence of an external current [152]. For instance, two-band superconductors can
display a state where the phase difference between their two condensates is neither locked
at 0 or π, the so called phase soliton state. [153, 154, 155, 156, 157, 158, 159] In 1D
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two-band systems, it was shown that such states can emerge from the application of a
current to the superconductor, [160, 161] with the detectable appearance of oscillations
of the critical current with the length of the system, provided that the interband cou-
pling is small. [162] In two-band systems with higher dimensions, the possibility of vortex
formation and its subsequent motion give origin to nonequilibrium phase textures, which
significantly affects the dissipation process. [163] Recently, the formation of phase-slips
in quasi-one dimensional two-band superconductors, analogously to their one-band coun-
terpart wires,[164, 165, 166, 167, 168, 169, 170] was studied and the time evolution of
phase solitons and the conditions for their existence in such scenario were systematically
described.

In the case of a superconducting loop that encloses an applied flux, the single-
valuedness of the order parameters ensures that the fluxoid is quantized. The passage
between different fluxoid numbers necessarily involves the vanishing of an order parameter
at some instant and position, permitting the occurrence of a phase slip. Such a system was
extensively studied for single band superconductors [171, 172, 173, 174, 175, 176, 177], with
prospects of utilization in a number of applications, such as a superconducting qubit and
several electronic devices [178, 179, 180, 181, 182, 183, 184, 185, 186, 187]. Of particular
interest to the present study is the deterministic phase-slip, which occurs when the energy
barrier separating two flux states vanishes. [176, 188] For single-band superconductors,
analytical expressions for the conditions to the occurrence of a deterministic phase-slip
have been found combining linear instability theory and Ginzburg-Landau formalism.
[176, 177] In this study we use linear stability theory together with the Ginzburg-Landau
formalism for two-band superconductors and derive a semi-analytical method to obtain
the critical flux for the transition between two fluxoid states in a superconducting loop.
Furthermore, we show that our analytical results are in agreement with the full Ginzburg-
Landau theory and investigate how the system behavior depends on parameters such
as the ring radius, the ratio between the diffusion coefficients of each band, and the
temperature. In Refs. [176, 177], the stability of single-band superconductors was studied
under the action of an external field varied at a finite rate. In the present chapter, when
investigating the stability of different fluxoid states in two-band superconductors, the flux
is either kept fixed or changed quasistatically.

The structure of this manuscript is as follows. In Sec. 5.1 we introduce the time-
dependent Ginzburg-Landau equations for two-band superconductors. In Sec. 5.2 we detail
how linear stability theory is used to obtain stability limits for our system and compare
them with fully numerical results. We apply our method under different physical condi-
tions in Sec. 5.3. Finally, we present our concluding remarks in Sec. 5.4.
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5.1 Theoretical Formalism
The time dependent Ginzburg-Landau equations for a two-band system, in dimen-

sionless units, are given as follows [24]:

(
∂

∂t
+ iφ

)
∆1 = − (−i∇− A)2 ∆1

+
(
χ1 − |∆1|2

)
∆1 + γ∆2 , (5.1)(

∂

∂t
+ iφ

)
∆2 = −D2

D1

(−i∇− A)2 ∆2

+
(
χ2 − |∆2|2

)
∆2 +

η1
η2
γ∆1 , (5.2)

and the Ampère’s law is:
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[
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D1

](
∂A
∂t

+∇φ

)
= Js − κ21∇× h , (5.3)

where the supercurrent density is given by:

Js =
2∑
j=1

ηj
η1

Dj

D1

Re
[
∆∗
j (−i∇− A)∆j

]
. (5.4)

In the equations above, Dj and ηj are the diffusion coefficient and the partial
density of states of band j; χj is defined as χj = (Tcj − T )/Tc, where the ratio between
the critical temperature of the j band and the critical temperature of the coupled system
(Tcj/Tc) is defined in Ref. [133]; γ is defined as γ = λ12/(η1δ), where δ = λ11λ22−λ212 is the
determinant of the coupling constant matrix with components λij. Finally, κ1 is defined
as the ratio between the coherence length at zero temperature ξ1 =

√
πh̄D1/8Tc and the

penetration length at zero temperature λ1 =
√

(1/N(0)ηjD1)(7ζ(3)h̄c2/32π4e2Tc) of the
first band. The order parameters ∆j are in units of 8π2T 2

c /7ζ(3); lengths are expressed
in units of the coherence length of the first band ξ1; the magnetic field and the vector
potential are given in units of H(1)

c2 and H
(1)
c2 ξ1, respectively, where H

(1)
c2 = Φ0/(2πξ

2
1),

with Φ0 = hc/2e being the magnetic flux quantum unit; the scalar potential is in units
of φ0 = H

(1)
c2 D1/c; the current densities in units of j0 = 4eN(0)η1π

3TcD1/(7ζ(3)ξ1); and
time in units of t0 = ξ21/D1. In Eq. (5.3), we have u = 5.79, as in the case of single-band
superconductors.

We have chosen the microscopic parameters of our two-band superconductor as
follows. The coupling constants are given by λ11 = 2.0, λ22 = 1.03 and λ12 = 0.005. The
partial density of states of band 1 is η1 = 0.355 (η2 = 1−η1). These parameters correspond
to a critical temperature of each band given by Tc1 = 0.9997Tc and Tc2 = 0.903Tc. The
ratio D1/D2 is left as a free parameter for our subsequent analysis. Our problem consists
of finding the local minimum of the system energy and then investigate at which critical
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flux this minimum becomes a saddle point i.e. the flux at which it is no longer stable. To
do so, we use the TDGL equations.

As derived in Ref. [24], the TDGL equations above are strictly valid only for gapless
superconducting states. However, since we are using TDGL as a mathematical tool to find
a local minimum, our procedure is valid as long as the Ginzburg-Landau expression for
the free energy remains valid. As a by-product, we will obtain a qualitative description of
the transient passage between states and the phase-slip that occurs during this passage.

In what follows, we consider a superconducting ring of radius R placed in an
homogeneous applied field in such a manner that the ring in the normal state would
enclose an amount of flux Φ. We consider that the ring width and thickness are much
smaller than all characteristic lengths of the system (the coherence lengths of each band,
the penetration length of the superconductor and R), thus the ring is effectively one-
dimensional. This implies that the Ampère law (5.3) does not need to be solved, the
vector potential can be taken uniform in the entire ring and is given by A = Φ/(2πR).

When numerically solving the time dependent Ginzburg-Landau equations, we
applied the link-variable method [189] which guarantees gauge invariance throughout the
numerical procedure. In order to simulate the ring geometry for the one-dimensional
system, we use periodic boundary conditions ∆j(0) = ∆j(L), φ(0) = φ(L), where L is the
ring length L = 2πR. The use of periodic boundary condition gives rise to a numerical
problem, since every single point of the grid is equivalent. In such scenario, nonuniform
states would never be encountered, since there is no preferred position for the nucleation
of this configuration. To overcome this difficulty, we randomly insert inhomogeneous spots
in the ring by locally changing the temperature by a physically negligible amount in the
order of 10−5Tc. The location of these spots and the specific value of the temperature
increment do not alter the results presented here.

5.2 The Linear Stability Theory
In this section, we apply linear stability theory to the problem of passage between

states with different winding number in a two-band superconductor. To our knowledge,
this method has been used in the past only for single-band superconductors.

Our starting point is the first Ginzburg-Landau equation in the one-dimensional
form:
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where x represents an arbitrary arc-length and A = Φ/(2πR).

We then write each order parameter as a stationary term plus a small perturbation
∆j = ∆0

j + δ∆j, with the stationary unperturbed term given by ∆0
j = aje

inix/R, where
ni is the winding number of the initial state. At present, we have limited this analysis
to the case in which both bands have the same winding number. However, in our later
discussion on numerically solving Eqs. (5.1)-(5.2), we will show that the winding number
of each order parameter after reaching the critical flux does not always equal unity, nor
is it always the same for both bands. The values of aj can be found from the procedure
employed in Ref. [135]; for completeness, we reproduce it below.

Substituting ∆0
j in Eqs. (5.5) and (5.6), with φ = 0, we obtain the following set of

equations:

− (ni/R− A)2 a1 +
(
χ1 − a21

)
a1 + γa2 = 0 , (5.7)

− D2

D1

(ni/R− A)2 a2 +
(
χ2 − a22

)
a2 +

η1
η2
γa1 = 0 . (5.8)

Defining ρ = a1/a2, a combination of Eqs. (5.7) and (5.8) produces the following
polynomial equation for ρ:

η1
η2
γρ4 +

(
χ2 −

D2

D1

(ni/R− A)2
)
ρ3

−
(
χ1 − (ni/R− A)2

)
ρ− γ = 0 , (5.9)

After ρ is known, a1 and a2 are given by:

a1 =
√
γ/ρ+ χ1 − (ni/R− A)2

a2 =

√
η1
η2
γρ+ χ2 −

D2

D1

(ni/R− A)2 . (5.10)
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To write down the perturbation, we follow the same procedures used for single-band
systems. Since single-valuedness of the order parameters implies that the perturbation has
to be periodic, we express it as a Fourier expansion:

δ∆j =
∑
nf

[âjnf
einfx/R + âj∗−nf

ei(2ni−nf )x/R]eλnf
t , (5.11)

here λnf
is real and nf is the winding number of the final state. We remind that nf is

also set to be the same for both bands. As we can see, the parameter λnf
determines the

stability of the the nf mode of the perturbation, since it decreases exponentially if λnf

is negative and grows exponentially otherwise. To determine the value of λnf
for a given

applied flux, we need to substitute ∆j = ∆0
j + δ∆j in Eqs. (5.5) and (5.6) and linearize

the resulting expressions with respect to δ∆j. Making use of Eqs. (5.7) and (5.8), we find:
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The scalar potential can be obtained from the expression σn∇φ = −Jn, where
σn = (1/u) (1 + η2D2/(η1D1)) is the normal conductivity. Using charge conservation and
assuming there is no charge accumulation, we have ∇ · (Jn + Js) = 0, from which the
equation for the scalar potential in our one-dimensional system can be written as:

σn
∂2φ

∂x2
=
∂Js
∂x

. (5.14)

Since the stability limits of our system depend on its energy landscape but not
on its dynamical parameter, we can take the limit σn → ∞, which allows us to take
φ = 0. With this result and using Eqs. (5.12)-(5.13), we are now able to write down an
eigenvalue-eigenvector equation for each λnf

, which is given by:


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



â1nf

â1∗−nf

â2∗−nf

â2nf

 = λnf


â1nf

â1∗−nf

â2∗−nf

â2nf

 (5.15)

with the coefficients Mij obtained as follows. Substituting Eq.5.11 in Eq.5.13, we have for
the first order parameter and specific value of nf :
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λnf
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and:
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From Eq. 5.16, we can identify that the coefficients M11, M12, M13 and M14 are
equal to the terms multiplying â1nf

, â1−nf
, â2−nf

and â2nf
, respectively. The same follows for

Eq. 5.17 and the analogous equations for the second order parameter.

The coefficients Mij in Eq. (5.15) can then be written as:

M11 = −(nf/R− A)2 + (χ1 − 2a21) ,

M12 = −a21 ,

M13 = 0 ,

M14 = γ ,

M21 = −a21 ,

M22 = −(−nf/R + 2ni/R− A)2 + (χ1 − 2a21) ,

M23 = γ ,

M24 = 0 ,

M31 = 0 ,

M32 =
η1
η2
γ ,

M33 = −D2

D1

(−nf/R + 2ni/R− A)2 + (χ2 − 2a22) ,

M34 = −a22 ,

M41 =
η1
η2
γ ,

M42 = 0 ,

M43 = −a22 ,

M44 = −D2

D1

(nf/R− A)2 + (χ2 − 2a22) . (5.18)

A detailed and cumbersome analysis of the matrixM can show that its determinant
(det(M)) depends on the applied flux only through (ni−A)2. Also, since the determinant
of a matrix equals the product of its eigenvalues, we have that det(M) = 0 at a critical flux.
Combined, these two results mean that the critical points for the transitions n→ n+1 and
n+1 → n+2 are separated by Φ0, as physically expected. In addition, we conclude that
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a)

b)

Figure 1 – The upper panel shows the values of a1 and a2 for ni = 0 as functions of
the applied flux. The lower panel presents det(M) as a function of Φ; the
black circle indicates the critical flux Φ = 1.087Φ0, above which the state
with winding number 0 is unstable.

the upper and the lower stability limits of a state with winding number n are equidistant
from nΦ0.

Furthermore, we can now clearly see the reason for assuming nf to be equal in
both bands. Since we solve Eq. (5.15) for each nf separately, nf must be the same in the
two bands. Nevertheless, it will be shown that the results from our method are still valid
even if the winding number of each band is not the same at the final state i.e. even if the
final state presents a phase soliton.
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Figure 2 – Time evolution of the minimum values of the order parameters of a state
initially prepared with winding number 0, close to the limit of stability, Φc =

1.087Φ0. R = 5ξ1, D1 = D2, T = 0.8Tc. Solid and dashed lines represent the
evolution for Φ = Φc + 0.001Φ0 and Φ = Φc − 0.001Φ0, respectively.

At this point, we introduce a compromise into our previously entirely analytical
procedure by adopting numerical routines moving forward. This is done because, in order
to get the final value of Φc, one needs first to solve the fourth order polynomial Eq. (5.9)
for ρ and subsequently for a1 and a2. With this result, det(M) must then be calculated for
different values of Φ, until det(M) = 0 is found. In principle, while it is possible to carry
on this procedure analytically, the laborious work required to do so is not worth, since
we can reach the same results with an almost negligible computational effort. In addition,
given the complexity of these equations, we probably would obtain intractable results.

To exemplify our method, we apply it to the problem of finding the critical flux
at which the Meissner state of a two-band superconducting ring with radius R = 5ξ1 and
D1/D2 = 1.00 is unstable against a perturbation with winding number nf . As is the case
for single-band superconductors, the first mode to become unstable corresponds to nf = 1.
Therefore, in the following we solve Eq. (5.15) with ni = 0 and nf = 1.

Panel a) of Fig. 1 presents the values of a1 and a2 as functions of the applied flux.
The region of high applied flux shows an important feature for our future discussions. As
can be seen, there is a pronounced change in the behavior of the curve corresponding to
a2, which acquires an elongated tail. As can be easily visualized from Eqs. (5.7)-(5.8), this
occurs because the applied flux reaches a value higher than the critical flux at which the
second band goes to the normal state in the decoupled regime. In other to avoid confusion



Chapter 5. Stability limits of flux states in two-band superconducting rings 119

Figure 3 – −∆Tc/Tc(0) as a function of the applied flux for a two-band ring with R = 5ξ1

and D1/D2 = 1.00.

between this critical flux and the critical flux at which the initial state becomes unstable,
hereafter we refer to the former as the ”upper critical flux of the second band”. Above
this flux, the second band stays superconducting due only to coupling with the first band.
Eq. (5.8) and the expression of the vector potential show that the upper critical flux of
the second band increases with D1/D2 and with the radius of the ring R.

The panel b) of Fig. 1 shows det(M) as a function of Φ, with the black circle
indicating the value of flux (Φc = 1.087Φ0) at which the first eigenvalue of M changes its
sign. This is the critical flux value, above which the system is unstable against decay into
a state with winding number 1.

While our semi-analytical method allows us to calculate the flux at which a state
becomes unstable, the full numerical solution of Eqs. (5.1)-(5.2) gives us the time evolution
of both order parameters for a given applied flux. Fig. 2 exemplifies the above analysis by
showing the time evolution of the minimum values of each order parameter for a system
with the same parameters described in Fig. 1. Here, dashed lines represent a case with
Φ < Φc, while solid lines show the order parameter evolution for Φ > Φc. For Φ < Φc,
the system just stays the whole time in the Meissner state, without major modifications.
However, if Φ > Φc, the system initially sits practically unperturbed in the Meissner
state. Eventually, the perturbation becomes noticeable, and the system transits to a state
with winding number greater than 0. As expected, the occurrence of a phase-slip is not
simultaneous in both bands, with the time interval between them depending on D1/D2,
the applied flux and temperature. Although both phase slips are not simultaneous, they
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Figure 4 – Critical flux for the emergence of a phase slip as a function of temperature
for different values of η1. The black dashed curve shows the single-band limit
Φsb
c =

√
(1− T )R2 + 1/2/

√
3.

do occur at the same place, i.e. they are a case of time-connected phase-slips. [190] After
this couple of phase-slips, the system stabilizes at a new state, with winding number 1.

As a test of our semi-analytical method we compare the results that it yields with
the well known expression for the single-band limit [191, 176, 177] Φsb

c =
√

(1− T )R2 + 1/2/
√
3.

Fig. 4 shows this comparison, by presenting the critical flux Φc as a function of the tem-
perature for different values of η1. As we can see, as η1 increases and the importance of
the second band to the physical behavior of the system decreases, the curve approaches
the single-band limit, represented by the black dashed curve. In particular, for η1 = 1,
both models coincide, supporting the correctness of our semi-analytical method.

As a last comment before the discussion of the main results of this Chapter, we
would like to emphasize that the Little-Parks oscillations in Tc due to the external flux
are fully taken into account in our method. This is shown in Fig. 3, where we present the
Tc variation as function of Φ for a ring with radius R = 5ξ1 and D1/D2 = 1.00. As can be
seen, the result is very similar to the well-known one band-limit, with the largest critical
temperature variation occurring at Φ = 0.5Φ0.

5.3 Results and Discussion
Having presented our semi-analytical method and an example of its application,

let us now apply it to a specific study. We will investigate how the critical flux, above
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Figure 5 – Critical flux above which the system becomes unstable as a function of the ra-
tio D1/D2. The blue (red) line presents the results obtained from our method
developed in Section 5.2 for a ring with radio R = 5ξ1 (R = 3ξ1). Black
circles (squares) show the values of the critical flux obtained numerically
directly from the TDGL.

which the Meissner state first becomes unstable against decay into a state with winding
number 1, depends on the ratio between the diffusion coefficients in each band and on the
bath temperature.

5.3.1 The Critical Flux Dependence on D1/D2

We have already seen that our linear stability analysis is correct in the single-band
limit, let us now compare its results with the direct numerical solution of Eqs. (5.1)-(5.2)
when both bands are active. In Fig. 5, we present the critical flux at which the two-band
system first becomes unstable, as a function of the ratio of the diffusion coefficients D1/D2.
The blue (red) line shows the critical flux obtained from our semi-analytical method for
a ring with radius R = 5ξ1 (3ξ1), whereas the black circles (squares) indicate the critical
flux obtained by solving numerically the TDGL equations for a ring with R = 5ξ1 (3ξ1).
The black circles indicate the critical flux obtained by numerically solving the TDGL
equations for the system with R = 5ξ1, and the black squares represent the results for
R = 3ξ1. As can be seen, the agreement between our semi-analytical method and the
numerical results fully verifies the validity of our procedure. In fact, the largest deviation
between them is of the order of 10−3Φ0.

Analyzing the curve corresponding to R = 5ξ1, one can see that the critical flux
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Figure 6 – Supercurrent carried by the first (blue circles) and second band (red circles)
in the Meissner state for an applied flux equals to the critical flux of the
given D1/D2 as a function of D1/D2, for R = 5ξ1

increases with D1/D2, reaching an asymptotic value for large diffusion coefficient ratio.
This can be explained by the amount of current carried by each condensate, which depends
on the relative strength of the bands and the values of D1 and D2. Since all microscopic
constants are held fixed and D1 is used in the definition of our units, the proportion
of current in each condensate is determined by the ratio D1/D2. An increase in this
ratio (decrease in D2) means a decrease in the amount of current carried by the second
condensate. This can be seen in Fig. 6, where we show the amount of current carried by
each band (calculated exactly at Φc(D1/D2)) as a function of D1/D2.

As the current in the second band decreases, the phase-slip formation process
becomes more dependent on the dynamics of the first band. Since the first band has a
higher critical temperature, the critical flux for the formation of a phase-slip increases,
explaining the general behavior of the curve. If the ratio D1/D2 becomes too large, the
dynamics of the system is determined solely by the first band and thus the critical flux
tends to a constant value, which is also in agreement with our results.

If we now examine the curve corresponding to R = 3ξ1, we see that a special
feature, that is, a minimum in the critical flux is now present. Here, for small values of
D1/D2, the critical flux for phase-slip formation decreases, contrary to increasing, as the
diffusion coefficient ratio increases.

The behavior of the curve resumes the previously described pattern for the R = 5ξ1

case only after reaching a minimum in this flux. This occurs due the relationship between
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Figure 7 – The main panel shows the critical flux for the formation of a phase-slip
(blue circles) and the upper critical field of the second band (red circles) as
functions of D1/D2. The inset presents the supercurrent carried by the first
(blue circles) and second (red circles) band in the Meissner state, calculated
at an applied flux equals to Φc(D1/D2), as functions of D1/D2. In both curves
R = 3ξ1.

the critical flux for the formation of a phase-slip Φc and the ”upper critical flux of the
second band” Φuc, defined in the previous Section. As shown in the main panel of Fig. 7,
Φc is larger than Φuc for small values of the ratio D1/D2. As a consequence, at the
stability limit, the second band is superconducting due only to the coupling with the first
band. As presented in the inset of Fig. 7, this implies that for these values of D1/D2,
a very small portion of current is carried by the second band. As we have seen in the
previous discussion, this means that the stronger band dominates the process of phase-
slip formation and results in a larger critical flux. Increasing D1/D2, the curves Φc and Φuc

intersect, activating the second band. This leads to a recurrence of the behavior observed
for R = 5ξ1. As we can see then, the minimum in Φc originates from the transition of the
weaker band from passive to active. This behavior is absent is the curve for R = 5ξ1 in
Fig. 5 because Φuc > Φc in the entire region of D1/D2 displayed in this figure.

Our method is also capable of calculating the critical flux for the inverse transition
i.e. between an initial state winding number equals to 1 in and a final state with winding
number equals to 0. When the external flux is being swept down, Φc for such transition is
defined as the first flux at which the initial state with ni = 1 becomes unstable against a
perturbation with nf = 0. In Fig. 8, this Φc as a function of D1/D2 is shown for R = 5ξ1

(blue curve) and R = 3ξ1 (red curve). As can be seen, for R = 5ξ1 the critical flux



Chapter 5. Stability limits of flux states in two-band superconducting rings 124

Figure 8 – Critical flux for the transition ni = 1 → nf = 0 as a function of D1/D2.

monotonically decreases with D1/D2 and at a certain point reaches 0. This means that is
necessary to invert the flux sign to get an unstable ni = 1. The ring with R = 3ξ1 behaves
at large D1/D2, but present the same non-monotonically behavior discussed in Fig. 5 at
small D1/D2.

5.3.2 Critical Flux Dependence on the Bath Temperature
Let us now investigate how the critical flux behaves with temperature. Fig. 9

depicts Φc for three different values of D1/D2 with temperature ranging from T = 0.8Tc

to T = 0.95Tc. Panel a) shows the critical flux for D1/D2 = 1.0 (blue curve), D1/D2 = 0.5

(red curve) and D1/D2 = 0.1 (yellow curve).

As we can see, the blue and red curves exhibit similar behavior; namely, for small
values of T , the critical flux decreases as the temperature increases. This is the expected
behavior in a superconducting system. On the other hand, the yellow curve presents the
intriguing behavior of an increasing critical flux with temperature value. This occurs
because, for such small values of D1/D2, the weaker band is passive throughout this
temperature region. As the amount of supercurrent carried by the weaker condensate
decreases, the system becomes more dominated by the stronger condensate, leading to an
increase in the critical flux. This behavior lasts until superconductivity in the weaker band
is completely destroyed, after which the critical flux decreases with temperature, a typical
behavior of single band superconductors. As can be seen, the blue and red curves also
display regions where Φc increases with the temperature. The mechanism behind this is
exactly the same one detailed for the yellow curve. Finally, we note that superconducting
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a)

b)

Figure 9 – The critical flux as a function of temperature for R = 5ξ1 (panel a)) and
R = 3ξ1 (panel b)). In each panel, we show the critical flux for D1/D2 = 1.0,
0.5 and 0.1 (blue, red and yellow curves, respectively).

rings with radius 3ξ1 depicted in panel b) presents the same qualitative behavior of the
yellow curve. In this case, the temperature values where the maximum and minimum of
the critical flux occurs are smaller than the ones obtained in panel a). As we have discussed
above, this occurs because a smaller radius makes the suppression of superconductivity
easier for both condensates.

5.3.3 The Phase Soliton State
In order to maintain the previous discussion as straightforward as possible, up to

this point we have not described how the final state varies as we change the value D1/D2.
In other words, we have not investigated what the winding numbers are in the final state
for the various values of D1/D2 presented in Fig. 5.

Given the small radii and the relatively high temperature employed in the cases
of Fig. 5, the critical flux we found is never larger than 1.5Φ0. This means that winding
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numbers larger than 1 are thermodynamically unfavorable. Nevertheless, as stated earlier,
it is still possible to obtain a state with a phase-slip in only one of the bands.

For R = 5ξ1 (R = 3ξ1), for instance, D1/D2 ≥ 0.8 (D1/D2 ≥ 1.1) the system al-
ways transits from the Meissner state (∆j = aMS

j ) to a phase-locked state (∆j = aPSj eikx),
where k = 1/R for both bands. In other words, both bands display the same winding
number. For D1/D2 < 0.8 (D1/D2 < 1.1) the Meissner state may be succeeded by a less
trivial state with a different phase winding at each band, which is known as a phase soli-
ton. The formation or not of the phase soliton depends on the exact value of the applied
flux. For instance, if the flux is much larger than the critical flux, the system will go to
a phase-locked state, even if its diffusion coefficient ratio allows for the formation of a
soliton.

On the other hand, if the applied flux is close enough to Φc in this region of diffusion
coefficient ratio, the system transits from the Meissner state to the a phase soliton state.
In panel a) of Fig. 10 we show the spatial dependence of the magnitude of the order
parameters and their phases in a typical soliton state. Since we have a periodic system,
we have taken the center of the x-axis at the phase-slip position. The parameters used
are R = 5ξ1, D1/D2 = 0.5, with an applied flux slightly above the critical flux obtained
for these parameters, Φc = 0.82Φ0. Unfortunately, our semi-analytical method is not able
to predict whether the final state will be phase-locked or the phase soliton state. We note
that, even though n1 = 0 and n2 = 1 in the final state, Φc is obtained from a initial
perturbation with winding number equal to 1 fro both bands.

The possible stabilization of a phase soliton (as a metastable state) can be char-
acterized by the time difference between the formation of phase-slips in each condensate,
hereafter referred as tγ. For states with n1 = n2, tγ is finite, while for the soliton state,
where the phase-slip never occurs in one of the order parameters, tγ → ∞. We now inves-
tigate how tγ depends on D1/D2 and on the applied flux. To do this, we numerically solve
the Ginzburg-Landau equations for different flux values, always initializing the system
with n1 = n2 = 0. The results are shown in Fig. 11, where we present tγ as a function
of Φ − Φc (with Φc being the critical flux for correspondent value of D1/D2) in order to
compare different values of D1/D2 on equal footing. As can be seen, as Φ gets closer to Φc,
tγ varies slowly for D1/D2 = 1.00, but presents a sharp increase that eventually leads to
a divergence at an appropriately small Φ for D1/D2 = 0.25 and 0.50. This is in agreement
with our previous result that a phase soliton is only possible for D1/D2 < 0.8 and a phase
soliton is only possible for parameters that result in tγ → ∞.

Let us now investigate the stability of our soliton state for different values of
applied flux. To do so, we start with the system in a state with no flux threading the
superconducting loop and with winding number zero in both order parameters, and grad-
ually change the applied flux in units of ∆Φ = 0.001Φ0. For each value of the applied flux
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a)

b)

Figure 10 – The spatial dependence of the magnitudes (solid lines) and phases (dashed
lines) of the order parameters correspondent to the first (blue) and second
(red) band in a soliton state. The left and the right vertical axes give the
magnitudes and the phases, respectively. In panel a) R = 5ξ1, D1/D2 = 0.5

and Φ = 0.82Φ0. In panel b) R = 50ξ1, D1/D2 = 0.1 and Φ = 3.27Φ0. In
both panels, T = 0.8Tc.

we let the system relax to its equilibrium state. In Fig. 12 we show the system energy
as a function of the applied flux in the range 0 ≤ Φ ≤ 1.2Φ0, for a superconducting
ring with R = 5ξ1 and D1/D2 = 0.25. Solid blue and dashed red lines correspond to the
regimes where the flux is being swept up and down, respectively. The expression for the
free energy density of our system can be written as: [24]
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Figure 11 – tγ as a function of (Φ−Φc) for D1/D2 = 0.25 (blue curve), 0.50 (red curve)
and 1.00 (yellow curve). Here R = 5ξ1 and T = 0.8Tc.
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In an equilibrium situation, we can take GL equations with ∂∆j/∂t = 0 and φ = 0.
Multiplying by ∆j and integrating by parts, one can obtain a simple expression for the
free energy density:

F = −1
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1

2

η2
η1
|∆2|4 (5.20)

As can be seen from the blue curve, the system stays at the zero winding number
state up to the critical flux Φc = 0.647Φ0, as predicted from our semi-analytical method,
and transits to a phase soliton state. During the transition a phase-slip occurs only in the
second order parameter. The soliton state remains stable up to Φ = 1.037Φ0. As we can
see, the soliton state can be stable for a large window of the applied flux values, making
it important to the behavior of the system. We note, though, that such window depends
on the rate at which the applied flux is being increased, decreasing if the flux step is too
large. If we now decrease the applied flux, as shown in the red curve, we see that the state
n1 = n2 = 1 is stable down to Φ = 0.356Φ0, where it transits to a different soliton state,
with n1 = 1 and n2 = 0, which still remains stable at zero applied flux.
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Figure 12 – Energy as a function of the applied flux for R = 5ξ1 and D1/D2 = 0.25. The
numbers n1 and n2 denotes the winding number of each order parameter.
Solid blue and dashed red lines depict the regimes where the flux is being
swept up and down in the range 0 ≤ Φ ≤ 1.2Φ0, respectively. In the dashed
yellow curve, the flux is decreased from Φ = Φ0 down to Φ = 0.

In the dashed yellow curve, on the other hand, we start from the soliton state at
Φ = Φ0 and the external flux is decreased. In this case, when we decrease the flux, the
system transits from the soliton state n1 = 0 and n2 = 1 to the state n1 = n2 = 0 at
Φ = 0.459Φ0. From the comparison of the different curves in Fig. 12 it becomes clear
that a soliton state can be metastable for a large range of applied flux, with its occurrence
being highly dependent on the system history. Note that, although the previous analysis
considered superconducting rings with small R the same conclusions are valid for more
realistic system sizes. For instance, we numerically obtained that for R = 25ξ1 (R = 50ξ1)
the phase soliton state can be found for D1/D2 < 0.3, (D1/D2 < 0.2) and the same
behavior can be expected for even larger values of R. The spatial dependence of the order
parameters magnitude and phase are shown in panel b) of Fig. 10.

Finally, it is expected that the strength of the interband coupling significantly
affects the stability of the soliton state. To see this, we investigated superconducting rings
with larger values of λ12. We note that changing λ12 also affects the critical temperature
of each band Tci. To keep this effect small and focus solely on how the coupling strength
influences the soliton state, we choose λ12 = 0.01 and λ12 = 0.05, which render Tc1 =

0.9989, Tc2 = 0.9022 and Tc1 = 0.9783, Tc2 = 0.8814, close to the original values obtained
for λ12 = 0.005. Fig. 13 shows the critical flux as a function of D1/D2 for the different
values of λ12. As can be seen, Φc slightly increases with the interband coupling, but the
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Figure 13 – Critical flux as a function of D1/D2 for three different values of λ12. In all
cases R = 5ξ1 and T = 0.8Tc.

overall behavior of the curves remains the same. Nevertheless, the limiting values of D1/D2

above which the phase soliton state can no longer be encountered are significantly affected.
As previously stated, for λ12 = 0.005, the phase soliton exists for D1/D2 < 0.8. For
λ12 = 0.01 this condition changes to D1/D2 < 0.5 and, more dramatically, for λ12 = 0.05

the phase soliton state was not found down to D1/D2 = 0.01. As physically expected,
we can conclude that stronger interband couplings favor states with the same winding
number in each order parameter, thus suppressing the formation of a phase soliton.

5.4 Concluding Remarks
In this chapter, we have studied the process of phase-slip mediated transitions

in two-band superconducting rings under an applied flux. By combining linear stability
theory with the time dependent Ginzburg-Landau equations for superconducting systems
with two condensates, we have developed a semi-analytical method to determine the
critical flux above which a transition must occur. We have validated our new method by
comparing it with the results of the numerical solution of the Ginzburg-Landau equations.
As we show, the agreement between the two methods is excellent.

Having verified the validity of our model, we used it to study how the behavior of
our system depends on the diffusion coefficient ratio of each band and the temperature.
A number of distinct features were shown, such as the unexpected increase of the critical
flux with temperature for certain system parameters. Another unique behavior of such
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systems is the possibility of a phase soliton state, which displays order parameters with
different winding numbers. We note that, with a suitable modification in the parameters,
our model could be applied to a bilayer composed of two single-band superconductors.
We note that these characteristic physical phenomena can also be investigated in super-
conducting layered rings, as shown in Ref. [192]. In such a case, an effectively two order
parameters system emerges due to the coupling between the order parameter of each layer.
In particular, the non-monotonic behavior of the critical flux with temperature can be
accomplished in bilayer ring composed of different superconducting materials.
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6 Vortical and Skyrmionic States in a
Twisted-Bilayer with d-wave Superconduct-
ing Pairing

6.1 Introduction
Chiral superconductivity [193] has been a topic of tremendous interest in the recent

literature due to its rich phenomenology [194, 195], including appearance of nontrivial
surface currents [196] and half-quantum vortices [197, 198, 199, 200, 201], to name a few
examples. Being mostly characterized by several Fermi surfaces, chiral superconductors
often present multiple superconducting gaps, and are thereby prone to a plethora of
interesting physics typical of multicomponent superconductivity [202, 120, 129, 203, 153].
Arguably, chiral superconductors gained a special relevance due to the increasing interest
in topological superconductivity [14] and its promise towards use in modern quantum
technologies [204]. With its highly non-trivial topology, the chiral state of superconductors
is known to present the uniquely associated phenomena, such as the gapless edge states
[205] and Majorana bound states localized in the vortex cores [206], which obey the non-
Abelian statistics [207] fundamental to future applications in quantum computing.

Recently, Can et al. [1] showed that a twisted bilayer composed of two monolayers
of the high-temperature superconductor Bi2Sr2CaCu2O8+δ [208] (Bi-2212) can display a
chiral topological phase which breaks time-reversal symmetry for twist angles near 45◦.
As they argued, at a twist angle equal to 45◦, the dx2−y2 order parameter of each layer,
characteristic of Bi-2212, induces a significant dxy component in the order parameter of
the other layer. This results in a superconducting state with d + id′ pairing symmetry.
Note that, given the Josephson coupling between the two monolayers of such a system,
the state in question bears physics related to φ-Josephson junctions [209, 210, 211].

The above arguments were developed in Ref. [1] considering a homogeneous super-
conducting state. IN what follows we go beyond this premise and investigate how such
system responds to applied magnetic field, i.e. how the vortex matter of such bilayers
evolves with the twist angle between the monolayers. As we will show, the emergent typ-
ical vortex configurations can be used as a smoking gun for the detection of the chiral
topological phase. Recently, it was proposed that edge currents can be used as a probe of
the topological phase [212, 213], although the small magnitude of such currents renders
their detection experimentally challenging. In the case of vortices, due to the broken time-
reversal symmetry, skyrmionic vortex states [214, 215, 216, 217, 218, 219, 201, 220, 221]
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arise in the topological phase, and exhibit a distinct magnetic signature that can be de-
tected in scanning imaging experiments. The skyrmionic nature of these states is identified
through the topology of the pseudospin texture defined by the local correlations between
the superconducting order parameters in the two layers. Furthermore, we show that the
vortex matter changes even within the topological phase itself. Namely, as one varies the
twist angle in the range where topological phase is stable, two different skyrmionic states
are found. In one of them, states with unit topological charge are favored (presenting as
a lattice of vortex pairs), while in the second one, states with large topological charge be-
come energetically favorable, causing formation of extended vortex chains with a distinct
appearance and magnetic signature.

The outline of this chapter is as follows. In Sec. 6.2 we present our theoretical
formalism and show how we deal with the twisted bilayer system at hand within the
framework of the Ginzburg-Landau theory. In Sec. 6.3 we present and discuss our main
results. We start by showing the existence of a topological phase for certain values of the
twist angle in a homogeneous system, to subsequently reveal and characterize the vortical
and skyrmionic matter, as well as transitions between them, inside the topological phase.
Our concluding remarks are given in Sec. 6.2.

6.2 Theoretical Formalism
To study a material with d-wave pairing within the Ginzburg-Landau framework,

one need to consider also a second order parameter with s-wave pairing, once it is impos-
sible to obtain a Ginzburg-Landau free energy with pure d-wave pairing due to symmetry
reasons. The free energy of this s+ d system is given by [222, 27]:

F1 = −2αs|∆s1|2 − |∆d1|2 +
4

3
|∆s1|4 +

1

2
|∆d1|4 +

8

3
|∆s1|2|∆d1|2 +

2

3
(∆∗2

s1∆
2
d1 +H.c.)

+2|Π∆∗
s1|2 + |Π∆∗

d1|2 + (Πx∆
∗
s1Π

∗
x∆d1 − Πy∆

∗
s1Π

∗
y∆d1 +H.c.) , (6.1)

with αs determining the relative strength between the s and d-wave components and Π =

(i∇ − A). Note that the fourfold symmetry characteristic of d-wave superconductors is
introduced in this model through the mixed gradient terms in the free energy contribution
coming from the kinetic energy of the system. To focus on the d-wave order parameter,
the value αs = 0.7 is taken such to make the s component of the order parameter very
small i.e. not having a significant role in the physics of the system. In this case, we found
the s-wave order parameter to be less than 20% of the d-wave component. Hereafter, the
sub index 1 will refers to the unrotated layer.

Minimizing Eq. 6.1 with respect to both components of the order parameter, we
find the following set of coupled equations:
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−αs∆s1 +
4

3
|∆s1|2∆s1 +

4

3
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2

3
∆2
d1∆

∗
s1 +Π∗2∆s1

+
1

2
(Π∗2

x − Π∗2
y )∆d1 = 0 , (6.2)

for the s-wave component, and:

−∆d1 + |∆d1|2∆d1 +
8

3
|∆s1|2∆d1 +

4

3
∆2
s1∆

∗
d1 +Π∗2∆d1 + (Π∗2

x − Π∗2
y )∆s1 = 0 ,(6.3)

for the d-wave component.

To use this formalism to investigate the twisted-bilayer we need two adaptations.
The first of them is to write Eqs. 6.1-6.3 for a rotated coordinate frame, for the description
of the twisted layer. Secondly, we need to add to the free energy the contribution coming
from the Josephson coupling between the two layers.

Beginning with the first task, the transformation of coordinates to the the rotated
frame is given as follows:

(
x′

y′

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x

y

)
, (6.4)

where x′ and y′ are the coordinates in the new rotated frame and θ is the angle of rotation.

To adapt Eqs. 6.1-6.3 to the new frame, we then need to find how the rotation
affects the operator Π. It is straightforward to see that the rotation operation given by
Eq. 6.4 leads to the following relations:

Π′2
x +Π′2

y = Π2
x +Π2

y , (6.5)

Π′2
x − Π′2

y = cos(2θ)Π2
x − cos(2θ)Π2

y − sin(2θ)ΠxΠy − sin(2θ)ΠyΠx . (6.6)

With this, Eqs. 6.1-6.3 are written for the rotated frame as:
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∗
x∆d2 +H.c.) , (6.7)

with the Ginzburg-Landau equations for the order parameters:
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where sub index 2 refers to the rotated layer.

Finally the free energy contribution coming from the Josephson coupling between
the two layers, as derived by Ref. [1], is given by:

F12 = A|∆(d1)|2|∆(d2)|2 − B cos(2θ)(∆(d1)∆
∗
(d2) +H.c.)

+C(∆2
(d1)∆

∗2
(d2) +H.c.) , (6.10)

with A, B and C taken as free phenomenological parameters. Note, however, that closed
expressions for these parameters are microscopically derived in Ref. [1]. Given the d-
wave symmetry of this component of the order parameter, the term proportional to B,
representing the tunneling of Cooper pairs between each layer, must be proportional to
cos(2θ). With the same reasoning, authors of Ref. [1] state that the term proportional to
C can be interpreted as the coherent tunnelling of two Cooper pairs between the layers.

The final set of equations for each component of the order parameter for both
layers are then by minimizing the total energy F = F1 + F2 + F12. This gives us:
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Figure 1 – Phase difference between the d-wave components of the order parameters of
two layers as a function of the twist angle θ. Blue and red curves represent the
phase difference for C = B/8 and C = B/5, respectively, while A = B = 0.1.
Dashed line shows the phase difference given by the analytical expression
arccos(B cos(2θ)/4C) from Ref. [1], for C = B/8. The nontrivial values of
the phase difference ( ̸= 0 or π) indicate existence of a topological phase for
a particular twist angle.

and:
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In these equations, the order parameters are in units of ∆0 =
√

(4/3W ) ln(Td/T );
lengths are in units of ξ = (νF/2)

√
W/ ln(Td/T ), where ξ is the coherence length of

a single layer and W = 7ζ(3)/(8π2T 2); magnetic field is in units of Hc2 = Φ0/(2πξ
2),

where the magnetic flux quantum is Φ0 = hc/2e; the free energy is in units of E0 =

(4N(0)/3W ) ln(Td/T ).

Eqs. 6.11-6.14 are then solved for different twist angles θ, assuming periodic bound-
ary conditions [223]. As the Ginzburg-Landau parameter κ for Bi-2212 is typically much
greater than 1, we disregard the contribution of the supercurrents to the total magnetic
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field and use a vector potential solely due to the applied magnetic field to solve the above
set of equations.

For a given θ, we initialize the calculations from dozens of different initial con-
ditions for the order parameters, which include the Meissner state, conventional vortex
lattices and skyrmionic states, while also varying the aspect ratio of the unit cell of the
simulation in order to identify the lowest-energy solutions for the vortex states. From
a given initial state, the system is relaxed through the numerical solution of the time-
dependent Ginzburg-Landau equations, which by construction guarantees the decrease of
the system energy with time. In what follows, we display the ground-state found for an
external applied magnetic field that corresponds to the flux of 24Φ0 threading the shown
unit cell, without loss of generality. Namely, for other values of the applied magnetic field
we obtained qualitatively equivalent results. When plotting the magnetic field profile in
different figures, we will show only the contribution of the supercurrents, after subtracting
the (strongly dominating) homogeneous external field from the total calculated field. To
obtain the field correspondent to each vortex configuration, we take the supercurrent Js

calculated through the solution of Eqs. 6.11-6.14 and numerically solve for the magnetic
vector potential ∇×∇×A = Js/κ

2. In this solution, the periodic boundary conditions
for the vector potential [223] are respected in our unit cell. The spatial distribution of the
field shown in the figures is calculated at the plane of the superconducting film, taking
into account the displaced Meissner currents in two layers as well as the Josephson current
between them. We note, though, that the resulting vector potential is not fed back into
the GL equations for the order parameters, since the system at hand is an extreme type-II
one and the effect of the generated magnetic field on the superconducting condensate is
negligible compared to the effect of the applied magnetic field.

6.3 Results and Discussion
As shown in Ref. [[1]] in the case of homogeneous superconductivity, for a certain

range of θ the competition between the terms proportional to B and C in F12 yields a
non-trivial phase difference between the d-wave components of the order parameters of
the two layers. Let us start by discussing the homogeneous solutions of our free-energy
model and show that it analogously allows for the existence of a topological phase.

To do this, we minimize the free energy density F = F1+F2+F12 with respect to
the modulus and phase of the s and d components of the order parameter in both layers.
Fig. 1 shows the phase difference between ∆(d1) and ∆(d2) (∆φ = φ(d1) − φ(d2)) which
minimizes the free energy as a function of θ. As can be seen from the figure, for small
twist angles up to a critical angle θi, the free energy is minimal when the order parameters
have the same phase. For twist angles larger than a critical value θf , the phase difference
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Figure 2 – Vortex configurations in the d-wave component of the order parameter of
the unrotated layer (first column) and the rotated layer (second column), for
the s-wave component of the order parameter of the unrotated layer (third
column) and the rotated layer (fourth column), and the magnetic response of
the system (fifth column), for three selected twist angles between the layers.
The applied magnetic field was H = 0.0368Hc2, corresponding to the magnetic
flux of 24Φ0 through the shown area of the sample.

that yields minimal energy equals π.

On the other hand, for angles between θi and θf , one obtains a non-trivial phase
difference between the condensates of the two layers, which means a superconducting
state that breaks time-reversal symmetry. In particular, for θ = π/4, the phase difference
is equal to π/2, i.e. a d + id′ superconducting state is found [1]. The values of θi and θf

depend on the particular values chosen for the parameters A, B and C, as can be seen
from the two examples shown in Fig. 1. Nevertheless, the features of the superconducting
state that we discuss below are always present in the range θi < θ < θf , for any choice
of the aforementioned parameters. Therefore, without loss of generality of our results, in
what follows we will use the parameters correspondent to the blue curve in Fig. 1. In that
case, θi ≈ 34◦ and θf ≈ 56◦.

Let us now go beyond these results and show how the twist angle affects the vor-
tex matter of such bilayers. In Fig. 2 we show the spatial distribution of the d-wave and
s-wave component of the order parameter for both layers, together with the magnetic
field distribution in the system, for θ = 0, 36◦ and 45◦. Once the value of αs is fixed, we
expect no qualitative changes for the s-wave components when we change the twist angle.
This is promptly confirmed in the third and fourth columns of Fig. 2. Moreover, as stated
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Aligned vortex
(composite state)
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(skyrmionic state)
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Figure 3 – Zoom on the composite (phase shifted, ∆φ = π/2, left column) and
skyrmionic (minimum energy, right column) vortex states for a bilayer
twisted with θ = 45◦, in applied magnetic field H = 0.12Hc2 (simulation
region 36 × 36ξ2). Panels a) and b) present the vortex positions in the first
and the second layer (blue and red circles, respectively). Panels c) and d)

show the sine of the phase difference between the condensates. Panels e) and
f) plot the Josephson current profile, with the average Josephson current
displayed in each panel. Panels e) and f) show the Josephson current profile
along the black dashed lines in panels g) and h), respectively. Red dashed line
in panel h) show the sine of phase difference between the layers along the
same line as the current shown.

previously, the magnitudes of the s-wave components are much smaller than the magni-
tudes for the d-wave components. Thus, the contribution of the s-wave order-parameters
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to the supercurrents is very small, having no effect in the field profiles presented here. For
θ = 0, as discussed above, the phase difference between the order parameters is locked at
zero. It is therefore energetically favorable for the vortices in the two layers to organize
in a composite configuration, where the vortex cores are vertically aligned between the
unrotated and the rotated layer. In this case, the magnetic field profile of the vortices ex-
hibits well defined peaks at vortex locations and one can clearly distinguish the fourfold
symmetry characteristic of dx2−y2 superconductors. Note that, for a finite θ, the vortex
lattice orientation would not be the same in each layer if they were decoupled. For the
coupled case studied here, though, we found that the Josephson coupling leads to the
alignment of the lattices and the vortex configurations remain qualitatively unchanged
for the non-zero twist angles outside the topological phase, i.e. for θ < θi or θ > θf .

Next, we increase the twist angle to 36◦, larger than θi, to enter the topological
phase in the ground state of the system (cf. Fig. 1). The composite vortex configuration is
no longer the most energetically favorable state, as the vortex cores in two layers no longer
coincide. As a consequence, the field of the vortex is now distributed over the two displaced
cores in two layers (see Fig. 2), reflecting a magnetic field profile of a dimer rather than one
clear peak. Notably, some vortices within the configuration remain seemingly composite.
The situation radically changes as we increase the twist angle further, to θ = 45◦ (bottom
row of Fig. 2). Here one sees that not only vortex cores displace between the layers, they
also organize into extended closed vortex chains. As will be discussed in the following
paragraphs, such a vortex chain is formed along a domain wall separating sample regions
with different phase differences between the layers. Moreover, such chains will exhibit
skyrmionic topology, with an integer topological charge equal to the total vorticity of the
chain. Last but not least, the overall shape and the magnetic signature of these chains
are uniquely distinct which facilitates their experimental observation.

The vortex splitting in the topological phase occurs in order to reduce the Joseph-
son current between the layers and thereby minimize the energy. This is shown in Fig. 3,
where we compare the composite (left column) and skyrmionic (right column) vortex
state for a system with twist angle θ = 45◦. In the composite state, the phase difference
between the d-wave component of the order parameters in each layer is fixed at π/2,
which is an energetically favorable phase difference in absence of vortices. Panels a) and
b) present the vortex core position in layers 1 (blue circle) and 2 (red circle). The sine of
the phase difference between the d-wave component of the order parameter in each layer
is shown in panels c) and d), to highlight the spatial phase changes. Panels e) and f)

present the profile of the Josephson current, with its average value given in the top left
corner of each panel. Finally, panels g) and h) show the Josephson current profile along
the black dashed lines shown in panels e) and f). As seen in panels e) and f), the phase
texture that emerges from the vortex splitting decreases the overall Josephson current be-
tween the layers, consequently lowering the system energy and rendering the skyrmionic
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 4 – Vortex configurations for twist angle θ = 36◦ ≳ θi at three values of applied
magnetic field. Each row corresponds to a different system size (lateral sizes
are shown), for same magnetic flux of 24Φ0. From left to right, the columns
respectively show the magnitude of the d-wave component of the order pa-
rameter for unrotated and rotated layers, the cosine and sine of the phase
difference between the order parameters in two layers, and the magnetic field
distribution across the system.

state energetically favorable. From the current profile presented in panels g) and h) one
can better relate the vortex splitting to the profiles of phase and the Josephson currents
around a vortex. While for the composite vortex the Josephson current is always positive
and vanishes only at the vortex core, the skyrmionic state presents Josephson current
with opposite polarities in the domains of phase difference ±π/2, with zero Josephson
current at the phase domain wall (cf. dashed red line in panel h) of Fig. 3. The line pro-
files along the black dashed line in this panel help visualize the correspondence between
the zero Josephson current and ∆φ = 0). We note that during the numerical solution of
the Ginzburg-Landau equations, the aligned vortex state transits to a split vortex state,
reconfirming the latter as the most stable and minimal energy solution for our system.
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(a3) (a4) (a5)(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5 – Vortex configurations for θ = 45◦, deep inside the topological phase, for three
values of applied magnetic field. Each row corresponds to a different system
size (lateral sizes are shown), for same magnetic flux of 24Φ0. From left to
right, the columns respectively show the magnitude of the d-wave component
of the order parameter for unrotated and rotated layers, the cosine and sine
of the phase difference between the order parameters in two layers, and the
magnetic field distribution across the system.

These results demonstrate that the twist angle and the onset of a topological phase
strongly influence the vortex matter of the system, with detectable consequences in the
magnetic profile at the onset of the topological phase and within the topological phase
itself. Due to the very large effective penetration depth of this ultrathin superconducting
system, a detailed characterization of the field profile is a difficult experimental task. Even
so, we note that the significant symmetry differences between the magnetic profile of the
composite vortex lattice and the vortex chains can be experimentally detected, especially
if the scanning probe can be brought in close proximity to the surface of the crystalline
2D material. This feature can therefore be used as a smoking gun for the detection of
topological superconductivity in such and similar bilayers. In what follows, we further
detail the vortex configurations for θ = 36◦ and θ = 45◦, which are the representative
examples of two different types of behavior we encountered in the vortex matter inside
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Figure 6 – Energy of the homogeneous system (without vortices) as a function of the
phase difference between the d-wave components of the order parameter in
two twisted layers. The blue, yellow and red curves show the energy for the
twist angle θ = 36◦, θ = 42◦ and θ = 45◦, respectively.

the topological phase.

6.3.1 Vortex Matter at the Onset of the Topological Phase
We start the description of the vortex matter for an angle close to θi (equivalent

results are obtained for angles close to θf ). In Fig. 4 we show vortex configurations found
for θ = 36◦, each row displaying minimum energy solutions for a different size of the unit
cell. As discussed previously, the vortex cores in two layers are displaced from each other
inside the topological phase, but each vortex of a given layer remains connected to its
counterpart in the other layer. This is visible in the phase difference profile, suggesting
the existence of a phase soliton between the two vortex cores. Hereafter, we refer to this
pair of connected vortices as the interlayer vortex pair. As can be seen in Fig. 4, inside
the interlayer vortex pair we find the phase difference ∆φ = π between the condensates
in two layers, and ∆φ = 0 outside of the pair.



Chapter 6. Vortical and Skyrmionic States in a Twisted-Bilayer with d-wave ... 144

(a3) (a4) (a5)
θ
 =

 4
5
,0

o
 

θ
 =

 4
2
,1

o
 

θ
 =

 3
8
,9

o
 

θ
 =

 3
6
,0

o
 

(a1) (a2) (a3) (a4) (a5)

(b5)(b4)(b3)(b2)(b1)

(c1) (c2) (c3) (c4) (c5)

(d5)(d4)(d3)(d2)(d1)

Figure 7 – Evolution of the vortex configuration when adiabatically decreasing the twist
angle from θ = 45◦ to 36◦. From left to right, the columns respectively show
the magnitude of the d-wave component of the order parameter for unrotated
and rotated layers, the cosine and sine of the phase difference between the
order parameters in two layers, and the magnetic field distribution across
the system.

As an object, the interlayer vortex pair displays skyrmionic properties. To better
see this, we map our GL model to a σ model, as done in Refs. [219, 198] in the context
of multicomponent systems, defining the pseudo-spin

n =
∆†
dσ∆d

∆†
d∆d

, (6.15)

with ∆d = (∆(d1),∆(d2)) and σ = (σ1, σ2, σ3), where σi is the Pauli matrix. We note that,
although ∆(d1) and ∆(d2) describe the superconducting order parameter in different layers,
here they are defined in the same plane, to allow the introduction of the pseudo-spin.

With such pseudo-spin profile, one then calculates the topological charge of the
system, defined as

Q =
1

4π

∫
n ·
(
∂n

∂x
× ∂n

∂y

)
dxdy. (6.16)

If we calculate the total topological charge for the three different configurations
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Figure 8 – Evolution of the vortex configuration when adiabatically increasing the twist
angle from θ = 36◦ to 45◦. From left to right, the columns respectively show
the magnitude of the d-wave component of the order parameter for unrotated
and rotated layers, the cosine and sine of the phase difference between the
order parameters in two layers, and the magnetic field distribution across
the system.

shown in Fig. 4, we obtain Q = 24 for each of them. As the same number of flux quanta
(24) are threading the shown unit cells, we conclude that each interlayer vortex pair is
actually a skyrmionic object with a topological charge equal to 1 (for a truly composite
vortex, Q = 0). We confirmed this further by calculating the topological charge not over
the entire unit cell, but only around isolated interlayer pairs.

Within the dashed rectangles shown in Fig. 4 we highlight vortex configurations
characteristic of the topological phase for twist angles close to θi. As can be seen from the
cosine and sine of the phase difference between the condensate of each layer, two adjacent
interlayer vortex pairs typically organize themselves into a larger correlated object. Inside
the dashed rectangles in panels (a1)−(a2) of Fig. 4, we can see that in one of the interlayer
vortex pairs (the one near the top of the rectangle) the vortex of the unrotated layer is on
the right and the vortex of the rotated layer is on the left. In the interlayer pair near the
bottom of the rectangle, the vortex positions are interchanged. In other words, adjacent
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Figure 9 – Energy as a function of the twist angle θ. The blue and red lines show the
energy curves for the twist angle being decreased from θ = 45◦ to 36◦ and
increased from 36◦ to 45◦, respectively.

pairs of vortices in two layers are twisted with respect to each other. The same behavior
can be easily verified in panels (b1)− (b2) and (c1)− (c2). After such an organization of
interlayer vortex pairs, their interlayer phase solitons become visibly connected, as seen
in the dashed rectangle of the cosine of the phase difference in Fig. 4. Due to proximity
and strong overlap between different phase domains, a supercurrent emerges surrounding
the two interlayer vortex pairs, yielding a rather weak magnetic field. As a consequence,
while the field profile of each pair is strong and the spatial correlation between them is
rather obvious, the consequence of the phase connection between them is difficult to spot
in the last column of Fig. 4.

6.3.2 Vortex Matter Deep Inside the Topological Phase
Finally we reveal the evolution of the vortex matter when the twisted bilayer is

deeply inside the topological phase, i.e. for twist angle θ ≈ 45◦ in the present case. As
previously shown, for this θ the phase difference between the d-wave components of the
order parameters in two layers is π/2 and we have a d+ id′ superconducting state. Despite
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this particularity, the characteristics encountered in the vortex matter in this case can
be related to those exhibited for other twist angles within the topological phase in the
vicinity of θ = 45◦.

Fig. 5 shows the order parameters of both layers, the cosine and the sine of the
phase difference between the layers and the magnetic field profile for θ = 45◦. In this case,
formation of interlayer vortex pairs with topological charge Q = 1 is still favorable, as
highlighted by dashed rectangles in panels (c1) − (c5) of Fig. 5. However, as highlighted
by dashed rectangles in panels (a1) − (a5), the organization of interlayer vortex pairs
into larger objects is preferable. As a consequence, a new vortex configuration emerges
- the skyrmionic chain. In this uniquely distinct state, instead of the small interlayer
phase domains within individual interlayer vortex pairs, much larger domains are formed.
Interlayer vortex pairs are interconnected along the domain wall, with a vortex core from
one layer being in between two vortex cores of the other one, forming a closed chain of
interlayer vortex pairs. Dashed rectangles in panels (a1) − (a5) of Fig. 5 exemplify one
such structure, containing 11 interlayer vortex pairs in a single closed chain. In panel (a5),
one can see that such vortex chain is a very laterally extended object (nearly 40ξ × 40ξ

in this case), and leaves a very clear and rather unusual signature in the magnetic field
profile of the system. Here, the peaks of the magnetic field along the vortex chain are
smaller in comparison with the isolated interlayer vortex pairs due to the fact that the
distance between the vortex cores in two layers is significantly larger in the former case.

Once again, and as can be seen from the third and fourth columns in Fig. 5, the
closed vortex chain separates two regions with different phase differences between the
layers. Inside the vortex chain, the phase difference between the condensates is ∆φ =

−π/2, while outside the chain ∆φ = π/2. The opposite is also possible: panels (b1)− (b5)

show such an example, where ∆φ = π/2 inside the chain, while ∆φ = −π/2 outside. We
note the difference from the case of the individual interlayer vortex pairs, harboring phase
difference π within them, with zero phase difference away from the pair.

If we now calculate the total topological charge around the vortex chains seen in
panels (a1)−(a5) and (b1)−(b5), we obtain Q = 11 and Q = 3, respectively, reflecting the
number of interlayer vortex pairs interconnected in the chain. These large values for the
topological charge of such a novel object contrast the exclusively Q = 1 of the individual
interlayer vortex pairs found for θ = 36◦. This very different behavior for different twist
angles emerges from the fact that, as discussed before, the domain wall separates regions
with a phase difference equal to 0 and π for θ = 36◦ and −π/2 and π/2 for θ = 45◦.

To understand how the value of the phase difference inside the domains affects the
topological charge, Fig. 6 shows the energy of the homogeneous system as a function of
the phase difference between the layers ∆φ for different values of the twist angle θ. At the
onset of the topological phase (blue curve in Fig. 6), the energy of the system is largest
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when the phase difference is π. Therefore, larger splitting within each formed interlayer
vortex pair costs energy, and their interconnection into larger objects is not energetically
favorable. Notice that, as discussed in Fig. 1, the phase difference equal to 0 does not
yield the free energy minimum in the homogeneous state of the system for θ at which the
topological state is stable. In the presence of magnetic field, the formation of interlayer
vortex pairs re-stabilizes the zero phase difference in a large part of the superconductor
for θ close to θi and θf .

On the other hand, deep in the topological phase (for θ = 45◦), a degenerate
lowest energy homogeneous state is found for phase difference equal to either −π/2 or π/2,
explaining the tendency to formation of coexisting domains with such phase differences.
The resulting long domain walls would cost energy, but not in the presence of magnetic
field when they are decorated by the skyrmionic vortex chains.

For θ values in the vicinity of 45◦, represented in Fig. 6 by θ = 42◦, the free-energy
minima no longer occur at −π/2 and π/2 but shift to lower phase differences and become
shallower (cf. Fig. 6). Nevertheless, the system still presents the vortex chains dividing the
superconductor in regions with phase differences −π/2 and π/2, since vortices require a
total phase difference π across the domain wall on which they reside. Once both values of
the phase difference possess the same free energy, the long domain walls described above
are also present, with the same size as the ones for θ = 45◦.

6.3.3 Transitions Between the Topological Vortex Matter with the Interlayer
Twist

Complementary, it seems relevant to discuss in which manner the above-described
characteristic skyrmionic states in the topological phase evolve as one continuously varies
the twist angle. To capture this behavior, we follow two distinct procedures. In the first, we
start deep in the topological phase, i.e. at a twist angle θ = 45◦ and a skyrmionic vortex
chain as the initial state of the simulation. We then “adiabatically” decrease the twist
angle down to 36◦, in decrements of 0.1◦, recording the evolution of the stable solution
(which is no longer necessarily the lowest-energy state). In Fig. 7 we show the selected
vortex configurations obtained during this procedure. Starting from the skyrmionic vortex
chain (panels (a1) − (a5)), we see that when the twist angle is decreased to θ = 42.1◦

(panels (b1)− (b5)), the contour of the chain can still be seen in the magnetic field profile
of the system. At the same time, the sine of the phase difference shows that the vortex
chain still splits the superconducting landscape in regions with interlayer phase difference
equal to either π/2 and −π/2. However, vortices in each layer start to group in pairs,
as reflected in double peaks appearing in the magnetic field profile along the chain. This
indicates the onset of the transition from the skyrmionic vortex chain to the skyrmionic
state with separate interlayer vortex pairs. Such a transition is more apparent for θ = 38.9◦
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(panels (c1)− (c5)). Although the magnetic field contour of the vortex chain can still be
visualized in this case, the separation of the superconductor into regions with different
interlayer phase differences becomes less clear. Finally, at θ = 36◦ (panels (d1) − (d5))
the transition between the two skyrmionic states is completed and the system displays an
arrangement of dissociated individual interlayer vortex pairs, surrounded by a landscape
of near-zero interlayer phase difference.

Along the opposite route, we start with the lowest-energy state with interlayer
vortex pairs for θ = 36◦ (shown in panels (a1)− (a5) of Fig. 8) as the initial state of our
system and then gradually increase the twist angle up to θ = 45◦. As can be conveniently
seen from the third and fourth columns of Fig. 8, the state gradually changes from the
topological phase with regions of interlayer phase difference either 0 or π to another one
with regions of interlayer phase differences either π/2 or −π/2. As the twist angle is
increased, the vortices forming an interlayer vortex pair slowly separate from each other.
One sees this by comparing the magnetic profile in panels (b5) and (c5), where the double
peak characteristic of a vortex pair becomes smeared. For twist angles in the vicinity of
θ = 45◦, this culminates in the formation of the skyrmionic vortex chain state, as we
display in panels (d1)− (d5).

Both discussed transitions between the two different topological skyrmionic vortex
states occur through the second-order relocation of vortex cores in each layer. This is
further evidenced in Fig. 9, where we show the energy of the system as a function of
the twist angle for the cases where θ is decreased from 45◦ to 36◦ (blue line, cf. Fig. 7),
and increased from 36◦ to 45◦ (red line, cf. Fig. 8). In other words, we evolve the two
characteristic skyrmionic vortex states found at two ends of the θ-range of the topological
phase of the system by gradually changing the twist angle across the topological phase.
As seen in Fig. 9, the energies of those states cross in energy at a twist angle θ∗ ≈ 38◦, i.e.
the states dominated by interlayer vortex pairs are energetically preferred for interlayer
twist below this angle, whereas the states containing extended skyrmionic vortex chains
become favorable for θ > θ∗. Obviously the exact value of θ∗ will depend on the details
of the simulation (size of the unit cell, magnetic field), but we can safely generalize this
result to conclude that skyrmionic vortex chains should be observable in the larger portion
of the twist range where topological phase is expected.

6.4 Concluding Remarks
To summarize, we have analyzed the vortex configurations emerging in a twisted

bilayer composed of superconducting monolayers with d-wave pairing - motivated by
prospects of such realizations using e.g. Bi2Sr2CaCu2O8+δ. In such a system, the phase dif-
ference between the superconducting order parameters in two layers depends on the twist
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angle θ, with a topological state with a non-trivial phase difference emerging for a range
of angles around θ = 45◦. In that topological phase, the superconducting state exhibits
broken time-reversal symmetry, giving rise to skyrmionic vortex configurations with topo-
logical charge not equal to zero. We revealed and characterized those nontrivial vortex
states, and discussed their detectable differences when compared to usual vortex lattice
found for twist angles outside the topological range. Based on those clearly discernible
differences, we argue that direct experimental observation of skyrmionic vortex states can
be used as a smoking gun to detect topological superconductivity in such systems.

In addition, we showed that the skyrmionic vortex matter also evolves with the
twist angle inside the topological phase. Namely, we have identified two distinct types of
skyrmionic states. At the onset of the topological state, the system prefers to preserve
same phase of the order parameter in two layers, so the broken reversal symmetry reflects
solely in formation of the interlayer vortex pairs. Each of this pairs carries a unit of
topological charge, and hosts phase difference π between the coupled superconducting
layers. As the twist angle is varied towards 45◦ and one is deeper in the topological
state, the phase difference of ±π/2 becomes energetically favorable. As a consequence,
the interlayer vortex pairs interconnect into extended closed chains, separating the regions
of the sample with phase difference either −π/2 or π/2. Such chains can easily exhibit
lateral extent on the micron scale, and carry topological charge equal to the number of
vortices interconnected in the chain. Once again, we emphasize that each of the two types
of skyrmionic flux objects leaves a clear signature in the spatial profile of the magnetic
field across the system, but will also host uniquely related local density of states and
bound states detectable by e.g. Scanning Tunneling Microscopy, as also suggested in
Refs. [147, 224] for the case of chiral d-wave superconductors. The calculation of such states
is left as a prospect for further work, being beyond the capability of the present Ginzburg-
Landau analysis (with Bogolyubov-de Gennes approach as a viable alternative [225, 226].
Another interesting outlook is to adapt the here-presented Ginzburg-Landau formalism
to the cases of other pairing symmetries that may arise in the twisted bilayers of present
interest, so to classify the emergent vortex matter according to the symmetries at hand
- and thereby enable conclusive identification of the pairing symmetry in experimental
systems through visualization of the vortex states - complementary to other existing efforts
(see e.g. [227]). Finally, we note that recent experimental breakthroughs [228, 229] readily
realized high-quality Josephson junctions of twisted Bi2Sr2CaCu2O8+δ flakes, promoting
such devices for further technological applications, rendering the analysis of the vortex
states presented in this chapter timely and relevant even from an applied point of view.
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7 Summary and outlook

7.1 Summary
In the preceding chapters, we explored both the stationary and dynamic charac-

teristics of superconducting vortex matter, uncovering properties that are intriguing from
both a fundamental and practical perspective. Throughout this study, we examined vari-
ous superconducting systems, including conventional mesoscopic and nanostripes of type
I and II under the influence of applied magnetic fields and currents, two-band supercon-
ducting rings subjected to external magnetic flux, and twisted bilayer heterostructures
composed of superconductors exhibiting d-wave pairing.

In Chapter 2, we revisited the longstanding issue of classifying superconductors
into type I and type II. Specifically, we examined how the presence of superconductor/in-
sulator surfaces alters the conventional Ginzburg-Landau (GL) classification, where mate-
rials are defined as type I when the GL parameter κc < 1/

√
2, and type II when κc > 1/

√
2.

Our analysis focused on mesoscopic superconducting squares, where the small volume-to-
area ratio amplifies these effects. We discovered that, unlike bulk superconductors which
have a single critical κc, mesoscopic systems exhibit three distinct critical κ values, each
marking a different regime in the superconductor’s response to an applied magnetic field.
For κ < κc1, we observe genuine type I behavior, where vortices are entirely absent,
regardless of whether the magnetic field is increased (from 0 to Hc2 starting from the
Meissner state) or decreased (from Hc2 to 0 starting from the normal state). In the range
κc1 < κ < κc3, the system exhibits an intermediate type I behavior. Here, vortices remain
forbidden during the ascending field protocol, but may nucleate during the descending
protocol. Within this intermediate type I regime, two distinct responses can be identified
during the descending field protocol: for κc1 < κ < κc2, the response is consistently dia-
magnetic, while for κc2 < κ < κc3, a paramagnetic response can emerge in certain field
ranges. Lastly, for κ > κc3, the system enters a quasi type II regime, where vortices can
also appear during the ascending field protocol.

In Chapter 3, we shifted our focus to the dynamic properties of thin superconduct-
ing nanostripes under the influence of an applied current. Specifically, we investigated how
the stripe’s thickness influences the creation and annihilation of vortex-antivortex pairs.
In circular superconducting wires, due to the symmetry of the magnetic field generated
by the transport current, it was theorized that flux penetrates the superconductor in the
form of a closed loop. Although this closed vortex line was predicted theoretically, it has
remained elusive in experiments, as its weak stray magnetic field and short lifetime pre-
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vent detection via techniques such as STM measurements. In our study, we demonstrated
that a new type of closed vortex state can emerge in rectangular stripes with sufficient
thickness. We showed that as vortex and antivortex lines approach each other during the
annihilation process, the endpoints of these lines—located near the top and bottom sur-
faces of the superconducting film—move at higher velocities. Consequently, these points
meet first, forming a closed vortex loop that gradually contracts until it collapses entirely.
To conclude our study, we proposed two potential experimental protocols for detecting
this closed vortex state.

Continuing our exploration of superconducting materials under transport currents,
in Chapter 4, we investigated how a superconducting stripe subjected to an inhomo-
geneous magnetic field can function as a superconducting diode. We proposed a device
configuration consisting of a central superconducting film flanked by two superconducting
wires carrying a DC bias. This setup breaks both inversion and time-reversal symmetries
in the system, leading to a polarity-dependent critical current in the central stripe. By
carefully tuning the DC bias in each wire, we demonstrated that it is possible to achieve
an optimal condition where vortex entry is facilitated for one current polarity and en-
tirely suppressed for the opposite polarity, effectively resulting in half-wave rectification.
Upon studying different inhomogeneous magnetic field profiles, we found that the diode’s
efficiency is maximized with an antisymmetric inhomogeneous field that closely resem-
bles the self-field profile of the current in the central superconductor. In this scenario, the
Bean-Livingston barrier is maximized for one current polarity, preventing flux penetration
and increasing the critical current. Conversely, for the opposite polarity, the constructive
combination of the external and inhomogeneous fields promotes the entry of vortices and
antivortices, which annihilate at the stripe’s center, creating hot spots and leading to a
lower critical current. Finally, we examined how the diode’s efficiency is influenced by
heat removal efficiency and the sweep rate of the applied current. Our results revealed
that smaller values for both parameters significantly enhance the diode’s performance.

In Chapter 5, we began our investigation into superconducting systems charac-
terized by multiple order parameters by examining the stability of flux states in two-band
superconductor rings. It is well-known that, when subjected to a sufficiently strong ex-
ternal magnetic flux, a conventional single-band superconductor ring transitions to a
lower-energy state via a phase-slip, where each phase-slip alters the phase winding of the
superconducting order by 2π. The critical flux Φc required for a transition between states
with winding numbers n and n± 1 can be determined using a combination of Ginzburg-
Landau theory and Linear stability analysis. In this chapter, we extended this approach
to two-band superconductors and developed a semi-analytical method to quickly deter-
mine Φc for any desired transition. We applied this method to explore how Φc depends
on factors such as the ring radius, system temperature, and the ratio of diffusion coeffi-
cients between the two bands. Notably, we discovered that the coupling between the two
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bands induces a non-monotonic dependence of Φc on temperature, a feature that can be
leveraged to probe the existence of multiple order parameters in newly discovered super-
conducting materials. Furthermore, we employed the time-dependent Ginzburg-Landau
formalism to investigate the conditions necessary for the stability of soliton states, where
the winding number differs between the two condensates in the system.

Finally, in Chapter 6, we explored vortical and skyrmionic states in twisted bilay-
ers with d-wave pairing symmetry. Recent breakthroughs in high-temperature supercon-
ductivity in two-dimensional cuprate superconductors, as well as the creation of twisted
heterostructures using these materials, have generated significant interest in the physics
of these systems. It has been shown that the symmetry mismatch in the nodal gaps of
twisted bilayers suppresses Cooper pair tunneling at twist angles close to 45◦, with Joseph-
son coupling between the layers primarily driven by second-order processes. The competi-
tion between first- and second-order tunneling mechanisms results in a non-trivial phase
difference between the layers, leading to the breaking of time-reversal symmetry. In our
study, we demonstrated that within this time-reversal symmetry-breaking phase, the vor-
tex matter transitions from conventional vortical states to skyrmionic states. Additionally,
we identified two distinct types of skyrmionic states and showed how the characteristic
patterns in their magnetic field profiles could serve as a smoking gun for detecting the
topological phase of these heterostructures. This finding provides a novel way to probe the
intricate topological properties emerging in twisted bilayer superconductors with d-wave
pairing.

7.2 Outlook
The work presented in the previous chapters opens several avenues for further

exploration of the problems addressed in this thesis. For instance, in Chapter 7, we focused
on how the vortex matter in twisted bilayer d-wave superconductors evolves with the twist
angle under static equilibrium. A logical extension of this work would be to examine how
the different skyrmionic states we identified behave under the influence of a transport
current. This introduces an intriguing challenge even in the case of a single layer system,
as the applied current can be oriented at various angles relative to the nodal directions of
the superconductor. It would therefore be insightful to study how the system’s response
varies with the orientation of the sample.

An additional interesting direction involves investigating how the sample’s orienta-
tion affects the critical current of a single layer as a function of an applied magnetic field.
Once the behavior of the single layer is fully understood, a second layer can be introduced,
allowing the study of how the twist angle and the resulting skyrmionic states influence the
superconductor’s response. Any distinctive features in the voltage versus time curves under



Chapter 7. Summary and outlook 154

such conditions could be experimentally tested using transport measurements, providing
a concrete means to validate theoretical predictions about the dynamics of skyrmions in
twisted bilayer systems.

So far, our discussion of twisted bilayers has primarily centered on their macro-
scopic properties, such as magnetic field profiles and their response to transport currents.
However, as noted in the conclusion of Chapter 7, the skyrmionic states predicted to
emerge in the topological phase are also expected to exhibit distinct local density of
states (LDOS) and bound states, which can be detected through STM measurements.
Exploring these local properties presents an intriguing direction for further study. The
theoretical calculation of such states could be pursued using the Bogoliubov-de Gennes
framework, providing a detailed microscopic view of the skyrmionic states. This approach
would allow us to investigate how the intricate electronic structure and bound states near
the vortex cores manifest at the local scale, offering direct signatures that can comple-
ment macroscopic measurements and further our understanding of the topological phases
in twisted bilayer superconductors.

Finally, as demonstrated in Chapter 5 during our investigation of the supercon-
ducting diode, the time-dependent Ginzburg-Landau (TDGL) theory provides a robust
framework for the numerical exploration of various superconducting devices. An exciting
direction for future work could involve applying this theory to more complex systems.
For instance, as recently proposed experimentally [230], multiple superconducting diodes
could be combined to achieve full-wave rectification. TDGL simulations would be highly
valuable for exploring the conditions needed to optimize such devices for practical appli-
cations.

Another promising application of TDGL simulations is modeling superconduct-
ing nanowire artificial neurons, as described in [231]. These devices consist of a shunted
superconducting wire, where the dynamic oscillation of electrical current between the su-
perconductor and the shunt resistor produces voltage spikes that emulate the behavior of
biological neurons. By coupling the TDGL equations with those governing the associated
electric circuit, it would be possible to thoroughly characterize and optimize the operation
of these artificial neurons.

Additionally, several recent proposals for electronic applications based on super-
conducting vortices could be investigated using TDGL simulations. These include vortex-
based memory devices [232] and vortex-driven spintronics in superconductor/ferromagnet
heterostructures [233]. The TDGL framework, as discussed in this thesis, offers a power-
ful tool for studying and optimizing the dynamics and performance of these innovative
superconducting technologies.
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APPENDIX A – Numerical Methods for the
Ginzburg-Landau equations

A.1 Introduction
In this section, we outline the numerical methods employed to solve the Ginzburg-

Landau equations. The specific details depend on the nature of the problem at hand—for
instance, whether the system is two- or three-dimensional, whether an external magnetic
field or current is applied, or whether the superconductor is periodic in one or more
dimensions, which would necessitate the use of periodic boundary conditions. Additionally,
factors such as heat dissipation due to vortex motion, the presence of multiple order
parameters in the superconductor, and other scenarios must also be considered. Below,
we describe the method used for each of these situations.

A.2 Infinite Superconductor with Rectangular Cross Section under
an Applied Magnetic Field

Let us begin with the simplest case: a very long superconductor, which can be
considered infinite along the z direction in the presence of an external magnetic field.
First, we rewrite the Ginzburg-Landau equations in dimensionless form. For this example,
we will express the equations using the following dimensionless units:

r̃ =
r
ξ

ψ̃2 =
ψ2

(α/β)

h̃ =
h
Hc2

Ã =
A
Hc2ξ

, (A.1)

where the quantities with a tilde on top represent dimensionless quantities.

By substituting Eq. A.1 into the first Ginzburg-Landau equation, we obtain:

α
√

(α/β)
(
−ψ̃ + |ψ̃|2ψ̃

)
+

h̄2

2m∗ξ2

√
(α/β)

(
−i∇̃− 2πξ2Hc2

Φ0

Ã
)2

ψ̃ = 0 . (A.2)
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Using the definitions of ξ and Hc2, we can see that the factor α
√

(α/β) is common
to all terms in the equation and can therefore be dropped. The resulting equation is:

−ψ̃ + |ψ̃|2ψ̃ +
(
−i∇̃− Ã

)2
ψ̃ = 0 . (A.3)

In the same manner, we can rewrite the second Ginzburg-Landau equation using
the new quantities as:

c

4π

Hc2

ξ
∇̃× h̃ =

e∗h̄

m∗ξ

α

β
J̃s , (A.4)

with the definitions of λ and Hc2, this is finally written as:

κ2∇̃× h̃ = J̃s , (A.5)

where the supercurrent, in dimensionless units, is given by:

J̃s = Re
[
ψ̃∗
(
−i∇̃− Ã

)
ψ̃
]
. (A.6)

In this specific situation, we can assume the system is invariant along the z di-
rection and take ψ̃ = ψ̃(x, y), Ã = (Ãx(x, y), Ãy(x, y), 0) and h̃ = (0, 0, h̃z(x, y)). From
this point forward, we drop the tilde over the dimensionless quantities to simplify our
notation.

Before continuing with our method, it is important to note that Eqs. A.3 and A.5
are invariant under the following gauge transformation:

ψ = ψeiχ

A = A +∇χ . (A.7)

This feature is important because, while numerically solving the Ginzburg-Landau
equations, we must ensure that the discretized version remains gauge invariant under the
same transformations. To achieve this, we employ the link variable method, also known
as the U − ψ method, developed by Gropp et. al. [189]. In this method, the following
auxiliary fields are defined:

Ux(x, y) = exp
(
−i
∫ x

x0

Ax(x
′, y)dx′

)
Uy(x, y) = exp

(
−i
∫ y

y0

Ay(x, y
′)dy′

)
. (A.8)
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These auxiliary fields have the following property:

U∗
xUx = 1

∂Ux
∂x

= −iAxUx , (A.9)

with the same being true for Uy. Thus, we can conclude that the following expression is
also valid:

∂(Uxf)
∂x

= Ux
(
∂f

∂x
− iAxf

)
, (A.10)

for an arbitrary function f .

From Eq. A.10, we can obtain:

∂2(Uxf)
∂x2

= −iAxUx
(
∂f

∂x
− iAxf

)
+ Ux

(
∂2f

∂x2
− i∂Ax

∂x
f − iAx

∂f

∂x

)
. (A.11)

Rearranging the terms, we have:

∂2(Uxf)
∂x2

= −Ux
(
−i ∂
∂x

− Ax

)2

f . (A.12)

With this result, the third term in Eq. A.3 can be written as:

(−i∇− A)2 ψ =

(
−i ∂
∂x

− Ax

)2

ψ +

(
−i ∂
∂y

− Ay

)2

ψ = −U∗
x

∂2(Uxψ)
∂x2

− U∗
y

∂2(Uyψ)
∂y2

,

(A.13)
where we have used Eq. A.9.

The final equation to be discretized is then:

U∗
x

∂2(Uxψ)
∂x2

+ U∗
y

∂2(Uyψ)
∂y2

+
(
1− |ψ|2

)
ψ = 0 . (A.14)

To proceed, we must define where each quantity is calculated in our discrete grid,
which is shown in Fig.1 As we can see, the order parameter and Ui are computed at the
grid points, while the supercurrent and the vector potential are calculated between two
consecutive grid points in the x or y directions, according to their components and hz is
calculated at the center of a square cell of the grid.

We are now ready to discretize Eq. A.14. The third term in this equation is straight-
forward and is given as:
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Figure 1 – Schematic view of the points where each quantity is computed in the simula-
tion grid.

(
1− |ψ|2

)
ψ →

(
1− |ψi,j|2

)
ψi,j , (A.15)

where i = 1, ..., Nx + 1 and j = 1, ..., Ny + 1 give the position of the grid point, with
Nx = Lx/∆x, Ny = Ly/∆y, Li being the length of the superconductor in the i direction
and ∆i the distance between two grid points at i direction.

For the discretized version of the second order derivative, we use the following
expression:

d2f

dx2
→ fi+1 − 2fi + fi−1

∆x2
, (A.16)

the first term in Eq. A.14 then becomes:

U∗
x

∂2(Uxψ)
∂x2

→ U∗
xi,j

Uxi+1,jψi+1,j − 2Uxi,jψi,j + Uxi−1,jψi−1,j

∆x2
, (A.17)
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with the y component being obtained by the same procedure.

We now define the following link variable, which is calculated between two grid
points:

Uxi,j = Uxi+1,jU∗
xi,j = exp (−iAxi,j∆x)

Uyi,j = Uyi,j+1U∗
yi,j = exp (−iAyi,j∆y) , (A.18)

where we have used Eq. A.9 and approximated the integral as the value of the vector
potential component times the interval length. With this definition, Eq. A.17 can be
rewritten as:

U∗
x

∂2(Uxψ)
∂x2

→
Uxi,jψi+1,j − 2ψi,j + U∗

xi−1,jψi−1,j

∆x2
. (A.19)

And the final discretized form of Eq. A.14 is given by:

Uxi,jψi+1,j − 2ψi,j + U∗
xi−1,jψi−1,j

∆x2
+
Uyi,jψi,j+1 − 2ψi,j + U∗

yi,j−1ψi,j−1

∆y2
+
(
1− |ψi,j|2

)
ψi,j = 0 .

(A.20)

To discretize Eq. A.5 we first establish that we are using a central scheme for first
order spatial derivatives, such as:

df

dx
=
fi+1 − fi−1

2∆x
. (A.21)

The two components of Eq. A.5 we need to discretize are:

Jsx − κ2
∂hz
∂y

= 0

Jsy + κ2
∂hz
∂x

= 0 . (A.22)

Since hz is calculated at the center of a square cell, the central scheme described
in Eq. A.21, gives the following result:

Jsxi,j − κ2
hzi,j − hzi,j−1

∆y
= 0

Jsyi,j + κ2
hzi,j − hzi−1,j

∆x
= 0 . (A.23)

The supercurrent, defined in Eq. A.6, can be rewritten with the help of Eq. A.10:
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Jsx = Re
[
−iU∗

xψ
∗∂(Uxψ)

∂x

]
= Im

[
U∗
xψ

∗∂(Uxψ)
∂x

]
, (A.24)

where we have used the mathematical identity Re(−iz) = Im(z).

The discretized version of Eq. A.24 is given by:

Jsxi,j = Im
[(U∗

xi+1,jψ
∗
i+1,j + U∗

xi,jψ
∗
i,j

2

)(
Uxi+1,jψi+1,j − Uxi,jψi,j

∆x

)]
=

= Im
[ |ψi+1,j|2 + |ψi,j|2 + Uxi,jψi+1,jψ

∗
i,j − U∗

xi,jψ
∗
i+1,jψi,j

2∆x

]
, (A.25)

where we have used Eq. A.18.

The first two terms are entirely real and so can be dropped from our expression.
Using the identity Im(z∗) = −Im(z), the final form of the discretized supercurrent is:

Jsxi,j = Im
[
Uxi,jψi+1,jψ

∗
i,j

∆x

]
. (A.26)

In a similar fashion, the discretized y component of the supercurrent is given by:

Jsyi,j = Im
[
Uyi,jψi,j+1ψ

∗
i,j

∆y

]
. (A.27)

Eqs. A.20 and A.23 are then used as a relaxation method for the order parameter
and vector potential. Starting from a given initial state, these quantities are updated until
convergence according to the following procedure:

ψ
(n+1)
i,j = ψ

(n)
i,j +

∆t

∆x2

(
U

(n)
xi,jψ

(n)
i+1,j − 2ψ

(n)
i,j + U

∗(n)
xi−1,jψ

(n)
i−1,j

)
+

∆t

∆y2

(
U

(n)
yi,jψ

(n)
i,j+1 − 2ψ

(n)
i,j + U

∗(n)
yi,j−1ψ

(n)
i,j−1

)
+ ∆t

(
1− |ψ(n)

i,j |2
)
ψ

(n)
i,j , (A.28)

for i = 2, ..., Nx and j = 2, ..., Ny.

A
(n+1)
xi,j = A

(n)
xi,j +∆tJ

(n)
sxi,j −

∆tκ2

∆y

(
h
(n)
zi,j − h

(n)
zi,j−1

)
, (A.29)

for i = 1, ..., Nx and j = 2, ..., Ny.

A
(n+1)
yi,j = A

(n)
yi,j +∆tJ

(n)
syi,j +

∆tκ2

∆x

(
h
(n)
zi,j − h

(n)
zi−1,j

)
, (A.30)

for i = 2, ..., Nx and j = 1, ..., Ny.
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In the equations above, f (n) denotes the value of quantity f at the nth iteration step.
The factor ∆t mimics the role of a time step between each iteration. To secure that the
solution will not diverge, we must limit ∆t = min (δ/4, δ/4κ2), where δ = 2/∆x2+2/∆y2.

We now need to define the physical quantities at the grid points not specified
by Eqs. A.28-A.30. To do this, we must define the spatial boundary conditions for such
quantities. Let us start by the local magnetic field. In the case treated here, of a very long
superconductor, we can assume that the demagnetization effects caused by the supercur-
rents do not affect the field at the system edge. Thus being, we have:

hzi,1 = Ha

hzi,Ny = Ha , (A.31)

for i = 1, ..., Nx, and:

hz1,j = Ha

hzNx,j = Ha , (A.32)

for j = 1, ..., Ny, where Ha is the modulus of the applied field.

With this, the vector potential also must satisfy the condition for the field at the
borders. We then have:

Axi,1 = Axi,2 −
∆y

∆x
(Ayi+1,1 − Ayi,1) + ∆yHa

Axi,Ny+1 = Axi,Ny +
∆y

∆x

(
Ayi+1,Ny − Ayi,Ny

)
−∆yHa , (A.33)

for i = 2, ..., Nx − 1, and:

Ay1,j = Ay2,j −
∆x

∆y
(Ax1,j+1 − Ax1,j)−∆xHa

AyNx+1,j = AyNx,j +
∆x

∆y
(AxNx,j+1 − AxNx,j) + ∆xHa , (A.34)

for j = 2, ..., Ny − 1.

For the boundary condition of the order parameter we impose the physical condi-
tion that no supercurrent flows in or out the superconductor. Analyzing Eq. A.6, one can
see that the following expression satisfies this condition:

(−i∇− A)ψ
∣∣∣
n
=

iψ
b
, (A.35)
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where b is a real constant and it is known as the de Gennes extrapolation length. If the
interface is of a superconductor/insulator type, b goes to infinity, whereas if the surface is
superconductor/magnetic, b goes to zero. With such expression, one can find the following
boundary condition for the order parameter:

ψi,1 =

(
1− ∆y

b

)
Uyi,1ψi,2

ψi,Ny+1 =

(
1− ∆y

b

)
U∗
yi,Ny

ψi,Ny , (A.36)

for i = 2, ..., Nx, and:

ψ1,j =

(
1− ∆x

b

)
Ux1,jψ2,j

ψNx+1,j =

(
1− ∆x

b

)
U∗
xNx,jψNx,j , (A.37)

for j = 2, ..., Ny.

A.3 Superconducting Film under an Applied Magnetic Field
Let us now extend our previous analysis to the case of a finite superconducting

film, where all three spatial dimensions must be considered, along with the demagnetiza-
tion effects caused by the supercurrents. To achieve this, we introduce the concept of a
simulation box, which extends beyond the superconductor. This box is used to simulate
the variation of the magnetic field from its value at the boundaries of the superconductor
to its value far away from the system, i.e., the applied field.

In this method, the simulation box has dimensions equal to (Lx, Ly, Lz), while the
dimensions of the superconductor are (lx, ly, lz). In terms of grid points, the simulation
box extends from i = 1, ..., Nx + 1, j = 1, ..., Ny + 1 and k = 1, ..., Nz + 1. In contrast,
the superconductor goes from for i = ix1 + 1, ..., ix2 − 1, j = jy1 + 1, ..., jy2 − 1 and
k = kz1 + 1, ..., kz2 − 1, where ix1 = Nx/2 + 1 − lx/(2∆x), ix2 = Nx/2 + 1 + lx/(2∆x),
jy1 = Ny/2 + 1 − ly/(2∆y), jy2 = Ny/2 + 1 + ly/(2∆y), kz1 = Nz/2 + 1 − lz/(2∆z) and
kz2 = Nz/2 + 1 + lz/(2∆z).

The adaptation of Eq. A.28 to three dimensions is straightforward, resulting in
the new expression governing the relaxation of the order parameter:
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Figure 2 – Schematic view of the three-dimensional version of the simulation grid intro-
duced in Fig. 1

ψ
(n+1)
i,j,k = ψ

(n)
i,j,k +

∆t

∆x2

(
U

(n)
xi,j,kψ

(n)
i+1,j,k − 2ψ

(n)
i,j,k + U

∗(n)
xi−1,j,kψ

(n)
i−1,j,k

)
+

∆t

∆y2

(
U

(n)
yi,j,kψ

(n)
i,j+1,k − 2ψ

(n)
i,j,k + U

∗(n)
yi,j−1,kψ

(n)
i,j−1,k

)
+

∆t

∆z2

(
U

(n)
zi,j,kψ

(n)
i,j,k+1 − 2ψ

(n)
i,j,k + U

∗(n)
zi,j,k−1ψ

(n)
i,j,k−1

)
+ ∆t

(
1− |ψ(n)

i,j,k|
2
)
ψ

(n)
i,j,k , (A.38)

for i = ix1 + 1, ..., ix2 − 1, j = jy1 + 1, ..., jy2 − 1 and k = kz1 + 1, ..., kz2 − 1. The new link
variable Uz is defined in the same manner as in Eq. A.18, being calculated between two
grid points along the z direction.

In addressing a three-dimensional problem, we must consider the three components
of the vector potential and the three components of the local magnetic field. In two
dimensions, we noted that the z component of the magnetic field was calculated at the
center of a unit cell in the xy plane. Similarly, the x and y components are calculated
at the center of a unit cell in the yz and xz planes, respectively. In mathematical terms,
we have hxi,j,k = hx(xi, yj +∆y/2, zk +∆z/2), hyi,j,k = hy(xi +∆x/2, yj, zk +∆z/2) and
hzi,j,k = hz(xi∆x/2, yj +∆y/2, zk), where xi, yj and zk correspond to the positions of the
grid points at indices i, j and k, respectively. 2 provides a schematic view of the numerical
grid in three-dimensions.
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With this, the equations governing the relaxation of each component of the vector
potential are given by:

A
(n+1)
xi,j,k = A

(n)
xi,j,k+∆tJ

(n)
sxi,j,k−

∆tκ2

∆y

(
h
(n)
zi,j,k − h

(n)
zi,j−1,k

)
+
∆tκ2

∆z

(
h
(n)
yi,j,k − h

(n)
yi,j,k−1

)
, (A.39)

for i = 1, ..., Nx, j = 2, ..., Ny and k = 2, ..., Nz, and:

A
(n+1)
yi,j,k = A

(n)
yi,j,k+∆tJ

(n)
syi,j,k−

∆tκ2

∆z

(
h
(n)
xi,j,k − h

(n)
xi,j,k−1

)
+
∆tκ2

∆x

(
h
(n)
zi,j,k − h

(n)
zi−1,j,k

)
, (A.40)

for i = 2, ..., Nx, j = 1, ..., Ny and k = 2, ..., Nz, and:

A
(n+1)
zi,j,k = A

(n)
zi,j,k+∆tJ

(n)
szi,j,k−

∆tκ2

∆x

(
h
(n)
yi,j,k − h

(n)
yi−1,j,k

)
+
∆tκ2

∆y

(
h
(n)
xi,j,k − h

(n)
xi,j−1,k

)
, (A.41)

for i = 2, ..., Nx, j = 2, ..., Ny and k = 1, ..., Nz.

In the same manner as we did for the two-dimensional case, we must impose that
no supercurrent flows in or out of the faces of the superconductor. This results in the
following boundary conditions for the order parameter:

ψix1,j,k =

(
1− ∆x

b

)
Uxix1,j,kψix1+1,j,k

ψix2,j,k =

(
1− ∆x

b

)
U∗
xix2−1,j,kψix2−1,j,k , (A.42)

for j = jy1 + 1, ..., jy2 − 1 and k = kz1 + 1, ..., kz2 − 1, and:

ψi,jy1,k =

(
1− ∆y

b

)
Uyi,jy1,kψi,jy1+1,k

ψi,jy2,k =

(
1− ∆y

b

)
U∗
yi,jy2−1,kψi,jy2−1,k , (A.43)

for i = ix1 + 1, ..., ix2 − 1 and k = kz1 + 1, ..., kz2 − 1, and:

ψi,j,kz1 =

(
1− ∆y

b

)
Uzi,j,kz1ψi,j,kz1+1

ψi,j,kz2 =

(
1− ∆y

b

)
U∗
zi,j,kz2−1ψi,j,kz2−1 , (A.44)

for i = ix1 + 1, ..., ix2 − 1 and j = jy1 + 1, ..., jy2 − 1.

At the boundaries of the simulation box, the local magnetic field must equal the ex-
ternally applied magnetic field, which leads to boundary conditions analogous to Eqs. A.31
and A.32. An important distinction is that there is no need to impose boundary conditions
on the vector potential, as its values at the border of the superconductor are not utilized.
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A.4 Superconductor Periodic in One Direction
Let us return to a two-dimensional system to discuss a different type of bound-

ary condition, specifically for a two-dimensional superconductor that is periodic in one
of its directions. In practice, such systems can mimic long superconducting stripes or
superconductors with a unit cell that repeats itself along one direction.

Assuming that the system is periodic along the y direction, the equations governing
the relaxation of the order parameter and of the vector potential do not change and remain
equal to Eq. A.28 and Eqs. A.29 and A.30, respectively.

While for the x direction the boundary condition from Eq. A.37, forbidding the
flow of supercurrent in or out the superconductor, still holds, we now must assure the
periodicity along the y direction. This is done through the following boundary condition:

ψi,1 = ψi,Ny

ψi,Ny+1 = ψi,2 , (A.45)

for i = 2, ..., Nx.

Similarly, the vector potential must also be periodic along the y direction. Ay is
only calculated within the periodic unit cell, thus being, we only need to impose periodic
boundary conditions to the x component of the vector potential, which are:

Axi,1 = Axi,Ny

Axi,Ny+1 = Axi,2 , (A.46)

for i = 1, ..., Nx. It is important to note that the boundary condition Eq. A.34 still holds
for Ay.

Finally, the local magnetic field can be calculated without the need for boundary
conditions at j = 1 and j = Ny, while the boundary condition from Eq. A.32 still applies.

A.5 Superconductor Periodic in Two Directions
Suppose we now want to describe a very large superconducting system, where the

effects of the boundaries can be completely neglected far from them. In this case, we need
to apply periodic boundary conditions along both spatial dimensions.

Here, the straightforward generalization of the procedure outlined above for a
system that is periodic in only one direction is not sufficient. We need to specify the
flux that crosses through our unit cell, as well as how the phase of the order parameter
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changes. In other words, we must define the number of vortices present in our system. The
correct numerical procedure for this situation was described in Ref. [223]. The authors
demonstrate that the order parameter and the vector potential must satisfy the following
boundary conditions:

A(r + av) = A(r) +∇χv

ψ(r + av) = ψ(r)exp (iχv) , (A.47)

where av are lattice vectors denoting the periodicity of our system and χv are functions
associated with them. This type of boundary condition ensures that our physical quantities
remain gauge invariant when translated by one of the vectors av. Since the order parameter
must be single-valued, the following relation can be obtained:

(χα(r) + χβ(r + aα)− χα(r + aβ)− χβ(r)) = −2πN , (A.48)

where α and β denotes the two vectors that gives our unit cell. By adding this result to
Eq. A.47, we can obtain that the total magnetic flux that cuts through our unit cell is
equal to NΦ0, which means the factor N appearing in Eq. A.48 is the number of vortices
in our system.

Let us give an example of this procedure in practice. Suppose the vectors are
aα = Lxx̂ and aβ = Lyŷ, with the functions associated to them being χα = 2Nπy/Ly and
χβ = 0. This functions obey the condition of Eq. A.48 and gives the following boundary
conditions for the order parameter:

ψi,1 = ψi,Ny

ψi,Ny+1 = ψi,2 , (A.49)

for i = 2, ..., Nx, and:

ψ1,j = exp

(
−i2πN

Ly
yj

)
ψNx,j

ψNx+1,j = exp

(
i2πN
Ly

yj

)
ψ2,j , (A.50)

for j = 2, ..., Ny.

While for the vector potential, we have:

Axi,1 = Axi,Ny

Axi,Ny+1 = Axi,2 , (A.51)
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for i = 1, ..., Nx, and:

Ay1,j = AyNx,j −
2πN

Ly

AyNx+1,j = Ay2,j +
2πN

Ly
, (A.52)

for j = 1, ..., Ny.

In this case, there is no need to impose boundary conditions on the local magnetic
field, as it can be calculated for all grid points.

A.6 Superconductor under an Applied Current
Having examined several scenarios of a superconducting system in an external

magnetic field, let us now describe our numerical methods for simulating systems under
the influence of an applied current. Since this is inherently a dynamical process, we must
employ the time-dependent Ginzburg-Landau equations, which, in dimensionless units,
are given by:

u

(
∂

∂t
+ iφ

)
ψ = ψ − |ψ|2ψ − (−i∇− A)2 ψ , (A.53)

where we have introduced the scalar potential φ and u is a parameter that comes from
the microscopic theory and it is equal to 5.79.

The Ampère law now reads:

σn

(
∂A
∂t

+∇φ

)
= Js − κ2∇× h , (A.54)

where σn represents the normal conductivity in dimensionless units and Js is the super-
current given in Eq. A.6.

In addition to these two equations, we need to find an expression that gives us the
scalar potential at each instant of time. To do this, we first note that our system must
obey the continuity equation:

∇ · J +
∂ρ

∂t
= 0 , (A.55)

with ρ being the electric charge density. Assuming there is no accumulation of electric
charge in our system, this is, ρ does not depend on time, we have:

∇ · J = ∇ · (Js + Jn) = 0 . (A.56)
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With the help of Eq. A.54 for the definition of the normal current density Jn, we
reach the final equation for the scalar potential:

∇2φ =
1

σn
∇ · Js . (A.57)

To obtain this equation, we have used the fact that our equations are invariant
under the following gauge transformations:

ψ = ψeiχ

A = A +∇χ

φ = φ+
∂χ

∂t
, (A.58)

and have chosen χ such that ∇ · A = 0.

Once we have the expression for the scalar potential, we can start to discretize
the equations and detail our numerical method. To do this, let us suppose our system
consists of a finite superconducting stripe with two metallic contacts located at x = 0 and
x = Lx, covering the whole width of the sample, which are responsible for the injection
and removal of the applied current.

For the time evolution of the order parameter, the discretization of the right-hand
side of Eq. A.53 is equivalent to Eq. A.28. For the left-hand side, we also need to define
a link variable for the time derivative:

U
(n,n+1)
ti,j = exp(iφ(n)

i,j ∆t) , (A.59)

given this expression, the discrete version of the left side of Eq. A.53 is:

u

(
∂

∂t
+ iφ

)
ψ =

U
(n,n+1)
ti,j ψ

(n+1)
i,j − ψ

(n)
i,j

∆t
. (A.60)

Combining Eq. A.28 and Eq. A.60 we then have:

ψ
(n+1)
i,j =

[
ψ

(n)
i,j +

∆t

u∆x2

(
U

(n)
xi,jψ

(n)
i+1,j − 2ψ

(n)
i,j + U

∗(n)
xi−1,jψ

(n)
i−1,j

)
+

∆t

u∆y2

(
U

(n)
yi,jψ

(n)
i,j+1 − 2ψ

(n)
i,j + U

∗(n)
yi,j−1ψ

(n)
i,j−1

)
+

∆t

u

(
1− |ψ(n)

i,j |2
)
ψ

(n)
i,j

]
exp(−iφ(n)

i,j ∆t) , (A.61)

for i = 2, ..., Nx and j = 2, ..., Ny. Note that the scalar potential is calculated at the grid
points.
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similarly, the evolution of the two components of the vector potential are given by:

A
(n+1)
xi,j = A

(n)
xi,j +

∆t

σn
J
(n)
sxi,j −

∆tκ2

σn∆y

(
h
(n)
zi,j − h

(n)
zi,j−1

)
− ∆t

∆x

(
φ
(n)
i+1.j − φ

(n)
i,j

)
, (A.62)

for i = 1, ..., Nx and j = 2, ..., Ny, and:

A
(n+1)
yi,j = A

(n)
yi,j +

∆t

σn
J
(n)
syi,j +

∆tκ2

σn∆x

(
h
(n)
zi,j − h

(n)
zi−1,j

)
− ∆t

∆y

(
φ
(n)
i.j+1 − φ

(n)
i,j

)
, (A.63)

for i = 2, ..., Nx and j = 1, ..., Ny, with the supercurrent being given by Eqs. A.26 and
A.27. In this case, to assure convergence, we must impose ∆t = min (uδ2/4, βδ2/4κ2),
with δ2 = 2/(1/∆x2 + 1/∆y2).

As can be seen from Eq. A.57, we do not have an equation for the evolution of the
scalar potential. Instead, this equation must be solve at each iteration n. One can apply
different numerical methods to complete this task. The simplest of them (not the optimal
in terms of computational time), the Jacobi’s method, is given by:

φ
(m+1)
i,j = φ

(m)
i,j +

∆t′

∆x2

(
φ
(m)
i+1,j − 2φ

(m)
i,j + φ

(m)
i−1,j

)
+

∆t′

∆y2

(
φ
(m)
i,j+1 − 2φ

(m)
i,j + φ

(m)
i,j−1

)
− ∆t′

∆x

(
J
(m)
sxi,j − J

(m)
sxi−1,j

)
− ∆t′

∆y

(
J
(m)
syi,j − J

(m)
syi,j−1

)
, (A.64)

where we have used m to differentiate this iteration step to the time steps of the previous
equations. Also, ∆t′ can be different from ∆t and have the optimal value ∆t′ = δ2/4.

Now, we need to specify the boundary conditions for the scalar potential. At the
normal contacts, they are given by:

φ1,j = φ2,j + Ja∆x

φNx+1,j = φNx,j − Ja∆x , (A.65)

for j = 2, ..., Ny. For the other two boundaries, we have:

φi,1 = φi,2

φi,Ny+1 = φi,Ny , (A.66)

for i = 2, ..., Nx.
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Since we are now in the presence of an applied current, the boundary conditions
for the local magnetic field must be changed accordingly. Applying the Ampère law, it is
simple to obtain the following equations:

hzi,1 = −JaLy
2κ2

hzi,Ny =
JaLy
2κ2

, (A.67)

for i = 2, ..., Nx − 1, and:

hz1,j =
Jayj
κ2

hzNx,j =
Jayj
κ2

, (A.68)

for j = 2, ..., Ny − 1.

The other boundary conditions remain unaltered, wiht the expressions derived
previously still holding.

Another possibility for the description of the superconducting state carrying cur-
rent is to consider an infinite superconducting stripe. In this case, instead of working
in the gauge where ∇ · A = 0 it is more convenient to work in the gauge φ = 0. The
procedure is the same outlined for the superconductor periodic in one direction under an
applied field, with the difference that the boundary conditions for the local magnetic field
at y = −Ly/2 and y = Ly/2, must be the ones given in Eq. A.67.

A.7 Superconductor under an Applied Current Described by the
Generalized Time Dependent Ginzburg-Landau Equation

Let us now treat the problem of a finite superconducting stripe driven by an
external current injected through normal contacts, but this time using the generalized
time-dependent Ginzburg-Landau equation (GTDGL), which, in dimensionless units, is
given by:

u√
1 + γ2|ψ|2

(
∂ψ

∂t
+
γ2ψ

2

∂|ψ|2

∂t
+ iφψ

)
= ψ − |ψ|2ψ − (−i∇− A)2 ψ , (A.69)

where γ is a constant related to the electron-phonon inelastic collision time and to the
superconducting gap.
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As can be seen from Eq. A.69, before writing a discrete version of this equation,
we need to obtain a closed expression for the time derivative of the order parameter, thus
obtaining its evolution in each iteration. To do this, let us define:

∆ = ψ − |ψ|2ψ − (−i∇− A)2 ψ , (A.70)

which allows us to rewrite Eq. A.69, as well as its complex conjugate as:

∂ψ

∂t
+
γ2ψ

2

∂|ψ|2

∂t
=

√
1 + γ2|ψ|2

u
∆− iφψ

∂ψ∗

∂t
+
γ2ψ∗

2

∂|ψ|2

∂t
=

√
1 + γ2|ψ|2

u
∆∗ + iφψ∗ . (A.71)

These equations can be combined in a matrix equation given by:

(
1 + γ|ψ|2

2
γ2ψ2

2
γ2ψ∗2

2
1 + γ|ψ|2

2

)(
∂ψ
∂t
∂ψ∗

∂t

)
=

 √
1+γ2|ψ|2
u

∆− iφψ√
1+γ2|ψ|2
u

∆∗ + iφψ∗

 . (A.72)

From linear algebra we know that, in the general matrix equation:

(
a1 b1

a2 b2

)(
x

y

)
=

(
k1

k2

)
, (A.73)

the solution for x is given by:

x =

∣∣∣∣∣k1 b1

k2 b2

∣∣∣∣∣
D

, (A.74)

where D is the determinant of the first of the 2× 2 matrix:

D =

∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣ . (A.75)

Applying this procedure to Eq. A.72, we have:

D =

∣∣∣∣∣1 + γ|ψ|2
2

γ2ψ2

2
γ2ψ∗2

2
1 + γ|ψ|2

2

∣∣∣∣∣ = 1 + γ2|ψ|2; , (A.76)

and:

∂ψ

∂t
=

∣∣∣∣∣∣
√

1+γ2|ψ|2
u

∆− iφψ γ2ψ2

2√
1+γ2|ψ|2
u

∆∗ + iφψ∗ 1 + γ|ψ|2
2

∣∣∣∣∣∣
1 + γ2|ψ|2

; . (A.77)
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Solving the determinant in Eq. A.77 finally gives us the the expression for the time
evolution of the order parameter:

(
∂

∂t
+ iφ

)
ψ =

√
1 + γ2|ψ|2

u
∆− γ2

Re [ψ∗∆/u]√
1 + γ2|ψ|2

; . (A.78)

The iteration procedure, in the discretized form, is given by:

ψ
(n+1)
i,j =

ψ(n)
i,j +∆t

√
1 + γ2|ψ(n)

i,j |2
∆

(n)
i,j

u
−∆tγ2

Re
[
ψ

∗(n)
i,j ∆

(n)
i,j /u

]
√

1 + γ2|ψ(n)
i,j |2

 exp(−iφ(n)
i,j ∆t) ,

(A.79)
with:

∆
(n)
i,j =

1

∆x2

(
U

(n)
xi,jψ

(n)
i+1,j − 2ψ

(n)
i,j + U

∗(n)
xi−1,jψ

(n)
i−1,j
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1

∆y2

(
U

(n)
yi,jψ

(n)
i,j+1 − 2ψ

(n)
i,j + U

∗(n)
yi,j−1ψ

(n)
i,j−1

)
+

(
1− |ψ(n)

i,j |2
)
ψ

(n)
i,j ; , (A.80)

The remaining steps of the iteration procedure are exactly the same as the ones
described for the standard time-dependent Ginzburg-Landau equation.

A.8 dx2−y2 Superconductor
Let us now consider a superconductor with d-wave pairing. The Ginzburg-Landau

equations for such system were given in the last chapter. Below, we give them in discretized
form, detailing the iteration procedure to solve them numerically:
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si,j +
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3
∆
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si,j ∆

(n)2
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]
, (A.81)

and:
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. (A.82)

Eqs. A.81 and A.82 are then iterated simultaneously until both components of
the order parameter reach convergence. The boundary conditions are applied in the same
manner we detailed for a s-wave superconductor.
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