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Abstract

Topological materials have contributed significantly to technological advancements in the past
few decades, and the discovery of three-dimensional (3D) Dirac semimetals (DSMs) has further
expanded the field of topological semimetals. Based on whether they obey Lorentz invariance, 3D
DSMs can be classified into type-I and type-II. Na3Bi and Cd3As2 have been confirmed as type-I,
while PtTe2 is a representative material of type-II. These representative materials possess stable
samples, mature preparation methods, and their theoretically predicted band structures have been
experimentally verified, making them excellent platforms for extensive research. In this disser-
tation, we conduct theoretical research on their optoelectronic and transport properties using the
random phase approximation (RPA) dielectric function and the energy-balance and momentum-
balance equations derived from the Boltzmann equation. The main research work and results are
as follows.

Based on Na3Bi, we analyze the band structure of type-I 3D DSMs and calculate the optical
conductivity (OC) of bulk Na3Bi under linearly polarized light using the energy-balance equa-
tion. The results show that type-I 3D DSMs exhibit anisotropic energy dispersion, and the band
inversion structure, along with Berry curvature, leads to a nontrivial density of states for low-
electron-density samples. This study revealed that the anisotropic OC of bulk Na3Bi originates
from its band structure. At higher and lower photon energies, the OCs are contributed by in-
terband and intraband transitions, respectively, leading to the optical absorption windows. The
energy relaxation time, temperature, and electron density of the sample significantly affect its
OC, further demonstrating the tunability of the OC in type-I 3D DSMs. Unique changes in OC
along the z direction occur with variations in electron density, reflecting the influence of Berry
curvature. This work explains existing experiments and explores the relationship between OC
and topological properties in type-I 3D DSMs.

Using the RPA dielectric function, we calculate the plasmon dispersion of type-I 3D DSMs
in different directions and at various electron densities. This study first reveals the anisotropic
plasmon of type-I 3D DSMs, which can be tuned by electron density. The results derived from
Na3Bi and Cd3As2 demonstrate differences in plasmons due to variations in the band parameters.
By reducing the electron density, one can observe that the plasmon wave vector in the kz direction
experiences a peculiar reduction influenced by the Berry curvature, exhibiting the topological
properties in collective excitations. Consequently, plasmons in the kz direction of type-I 3D DSMs
are tunable.

Using the energy-balance equation, we calculate the optical conductivity (OC) of a type-II 3D
DSM PtTe2 under linearly polarized light. Unlike Na3Bi, we found that the anisotropic OC of
the bulk PtTe2 originates from its tilted Dirac cone. The OCs of PtTe2 are also induced by intra-
and interband transitions, as well as the phenomenon of absorption windows, which stems from
the gapless nature of Dirac fermions. The tilted Dirac cone causes significant differences in the
interband transition at higher photon energies, reflecting the distinction between type-I and type-
II 3D DSMs. The energy relaxation time, temperature, and electron density also affect the OC of

i



ii

PtTe2, demonstrating its tunability. This work is the first to reveal the physical mechanisms and
phenomena behind the OC of bulk PtTe2, providing theoretical support for further experiments
and exploring the potential of such materials in optoelectronic devices.

With the momentum-balance equation, we calculate the transport and quantum lifetimes of the
bulk PtTe2. The results obtained by introducing the impurity density as a fitting parameter are
consistent with experiments, indicating that our theoretical model can provide an effective way
to study background impurities. By analyzing the theoretical data and experimental results, we
found that the anisotropic effective mass of the bulk PtTe2 leads to anisotropic mobility, mainly
due to its tilted Dirac cone. This research explains the existing transport results and predicts how
the transport lifetime and mobility of PtTe2 change with electron density, providing a theoretical
foundation for future studies on the transport properties of type-II 3D DSMs.

In summary, this thesis studies the nontrivial band of type-I 3D DSMs and the effects of topo-
logical properties on their optical conductivites and plasmons. Meanwhile, optical conductivites
and lifetimes primarily governed by tilted Dirac cones of type-II 3D DSMs are also investigated.
These investigations provide theoretical foundations for understanding the optoelectronic and
transport properties of emerging topological materials and exploring their potential applications.



Samenvatting

Topologische materialen hebben de afgelopen decennia aanzienlijk bijgedragen aan de technol-
ogische vooruitgang, en de ontdekking van driedimensionale (3D) Dirac-semimetalen (DSM’s)
heeft het veld van topologische semimetalen verder uitgebreid. Afhankelijk van of ze de Lorentz-
invariantie respecteren, kunnen 3D DSM’s worden ingedeeld in type-I en type-II. Na3Bi en
Cd3As2 zijn bevestigd als type-I, terwijl PtTe2 een representatief materiaal is voor type-II. Deze
representatieve materialen beschikken over stabiele stalen, goed ontwikkelde bereidingsmetho-
den, en hun theoretisch voorspelde bandstructuren zijn experimenteel bevestigd, waardoor ze als
uitstekend platform kunnen dienen voor uitgebreid onderzoek. In deze dissertatie voeren we the-
oretisch onderzoek uit naar hun opto-elektronische en transporteigenschappen met behulp van
de random phase approximation (RPA) diëlektrische functie en de energie- en momentumbal-
ansvergelijkingen die zijn afgeleid van de Boltzmann-vergelijking. Het belangrijkste onderzoek-
swerk en de resultaten zijn als volgt.

Gebaseerd op Na3Bi analyseren we de bandstructuur van type-I 3D DSM’s en berekenen we
de optische conductiviteit (OC) van bulk Na3Bi onder lineair gepolariseerd licht met behulp van
de energie-balansvergelijking. De resultaten tonen aan dat type-I 3D DSM’s anisotrope energie-
dispersie vertonen, en de bandinversiestructuur, samen met Berry-kromming, leidt tot een niet-
triviale dichtheid van toestanden voor stalen met lage elektrondichtheid. Deze studie onthulde
dat de anisotrope OC van bulk Na3Bi voortkomt uit zijn bandstructuur. Bij hogere en lagere
fotonenergieën worden de OC’s respectievelijk bijgedragen door interband- en intrabandovergan-
gen, wat leidt tot de optische absorptievensters. De energie-relaxatietijd, temperatuur en elek-
trondichtheid van het monster beı̈nvloeden de OC aanzienlijk, wat de afstelbaarheid van de OC
in type-I 3D DSM’s verder aantoont. Unieke veranderingen in OC in de z-richting treden op bij
variaties in elektrondichtheid, wat de invloed van Berry-kromming weerspiegelt. Dit werk verk-
laart bestaande experimenten en verkent de relatie tussen OC en topologische eigenschappen in
type-I 3D DSM’s.

Met behulp van de RPA diëlektrische functie berekenen we de plasmon-dispersie van type-
I 3D DSM’s in verschillende richtingen en bij verschillende elektrondichtheden. Deze studie
onthult voor het eerst de anisotrope plasmon van type-I 3D DSM’s, die kan worden afgesteld
door elektrondichtheid. De resultaten afgeleid van Na3Bi en Cd3As2 demonstreren verschillen
in plasmons door variaties in de bandparameters. Door de elektrondichtheid te verlagen, kan
men observeren dat de plasmon-golfvector in de kz-richting een merkwaardige afname ondergaat,
beı̈nvloed door de Berry-kromming, wat de topologische eigenschappen in collectieve excitaties
aantoont. Bijgevolg zijn plasmons in de kz-richting van type-I 3D DSM’s afstelbaar.

Met de energie-balansvergelijking berekenen we de optische conductiviteit (OC) van een type-
II 3D DSM, PtTe2, onder lineair gepolariseerd licht. In tegenstelling tot Na3Bi vonden we dat
de anisotrope OC van bulk PtTe2 voortkomt uit zijn hellende Dirac-kegel. De OC’s van PtTe2
worden ook geı̈nduceerd door intra- en interbandovergangen, evenals het fenomeen van absorp-
tievensters, dat voortkomt uit de bandkloofloze natuur van Dirac-fermionen. De hellende Dirac-
kegel veroorzaakt aanzienlijke verschillen in de interbandovergang bij hogere fotonenergieën, wat
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het onderscheid tussen type-I en type-II 3D DSM’s weerspiegelt. De energie-relaxatietijd, tem-
peratuur en elektrondichtheid beı̈nvloeden ook de OC van PtTe2, wat de afstelbaarheid aantoont.
Dit werk is de eerste die de fysieke mechanismen en fenomenen achter de OC van bulk PtTe2
onthult, en biedt theoretische ondersteuning voor verdere experimenten en verkent het potentieel
van dergelijke materialen in opto-elektronische apparaten.

Met de momentum-balansvergelijking berekenen we de transport- en kwantumlevensduur van
de bulk PtTe2. De resultaten verkregen door de onzuiverheidsdichtheid als een fittingparame-
ter in te voeren, komen overeen met experimenten, wat aangeeft dat ons theoretische model een
effectieve manier kan bieden om achtergrondonzuiverheden te bestuderen. Door de theoretis-
che gegevens en experimentele resultaten te analyseren, vonden we dat de anisotrope effectieve
massa van bulk PtTe2 leidt tot anisotrope mobiliteit, voornamelijk als gevolg van zijn hellende
Dirac-kegel. Dit onderzoek verklaart de bestaande transportresultaten en voorspelt hoe de trans-
portlevensduur en mobiliteit van PtTe2 veranderen met elektrondichtheid, wat een theoretische
basis biedt voor toekomstige studies over de transporteigenschappen van type-II 3D DSM’s.

Samengevat bestudeert deze thesis de niet-triviale band van type-I 3D DSM’s en de effecten van
topologische eigenschappen op hun optische conductiviteit en plasmons. Tegelijkertijd worden
optische conductiviteiten en levensduren die voornamelijk worden bepaald door hellende Dirac-
kegels van type-II 3D DSM’s ook onderzocht. Deze onderzoeken bieden theoretische onder-
bouwing voor het begrijpen van de opto-elektronische en transporteigenschappen van opkomende
topologische materialen en het verkennen van hun potentiële toepassingen.
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Introduction

In 1928, physicist P. A. M. Dirac proposed the famous Dirac equation, which for the first time
reconciled special relativity with quantum mechanics [1]. The form of the Dirac equation stems
from the constraints of relativity, where derivatives of time and space must appear at the same
order in the equation describing the motion of electrons, and the probabilistic interpretation of
the wave function ensures that the Dirac equation depends only on the first-order time derivative.
Dirac’s derivation used 4×4 complex matrices that in their modern form are referred to as gamma
(γ) matrices and a four component wave function. The four components describe both positive
and negative charge solutions, as well as spin-up and spin-down states. This epochal moment
in theoretical physics, originating in these simple considerations, led to a new understanding
of the concept of spin, predicted the existence of antimatter, and was the invention of quantum
field theory itself. A number of variations of the Dirac equation quickly followed. In 1929,
mathematician Hermann Weyl proposed a simplified Dirac equation, known as the Weyl equation,
used to describe massless fermions with definite chirality or handedness [2]. In 1937, Ettore
Majorana found a modification using real numbers, which described a neutral particle that was
its own antiparticle [3]. These developments have found great application in modern particle
physics. The Dirac equation is now the fundamental equation that describes relativistic electrons,
and the Majorana equations are a candidate to describe neutrinos. The Dirac equation is also a key
concept leading to topological phenomena such as zero modes and chiral anomalies in quantum
field theories. Unfortunately, in the nearly 90 intervening years, no candidate Weyl fermions have
been observed as fundamental particles in high-energy particle physics experiments.

In condensed matter physics, where one is interested in energy scales much smaller than the
rest mass of the electron, it would appear that a nonrelativistic description, perhaps with minor
corrections, would suffice and that Dirac equation would not play an important role. However, the
propagation of even slow electrons through the periodic potential of a crystal leads to a dressing
of the electronic states. In certain instances, this results in an effective low-energy description
that once again resembles the Dirac equation. The most famous example is the two-dimensional
(2D) Dirac electronic system in graphene. Monolayer graphene obtained by mechanical exfo-
liation of highly oriented pyrolytic graphite has a linear and gapless energy dispersion that is
captured by the 2D massless Dirac equation [4, 5]. Angle-resolved photoemission spectroscopy
(ARPES) experiments confirmed the band structure of monolayer graphene [6], as shown in Fig.
1.1. The following research quickly revealed that graphene has many unique properties, such
as high carrier mobility [7–9], the quantum Hall effect (QHE) and Berry phase [10]. In recent
years, it has been discovered that in some three-dimensional (3D) crystals, the low-energy dis-
persion of fermions can also be described by the massless Weyl or Dirac equation. These newly
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Properties of the two-dimensional Dirac electronic system in monolayer graphene.
(a) Honeycomb lattice structure of monolayer graphene. (b) Brillouin zone corresponding to the
lattice structure, with the K and K′ points indicating the positions of the Dirac cones. (c) En-
ergy band of graphene and the Dirac cone structure. (d) Relationship between the frequency of
the Shubnikov-de Haas oscillations BF = (h/4e)n and the carrier concentration n, where n > 0
represents electrons and n < 0 represents holes. This result shows that the electron energy E is
proportional to the wave vector k, thus confirming the linear band of graphene. (e) The cyclotron
mass mc of graphene is proportional to the square root of the carrier concentration

√
n. (f) Hall

conductivity σxy and longitudinal resistivity ρxx of graphene at a temperature T = 4 K and mag-
netic field strength B = 14 T as functions of carrier concentration, where σxy increases in integer
multiples of 4e2/h, demonstrating the quantum Hall effect in graphene. (f) ARPES experimental
results clearly show the linear band structure at the Dirac point in monolayer graphene. The above
results are adapted from Refs. [5] and [6].

discovered 3D crystals are classified as Weyl semimetals (WSMs) and Dirac semimetals (DSMs).
These semimetals exhibit rich topological and physical properties, making them a new platform
for studying the characteristics of topological electronic states in materials. This thesis primarily
studies 3D DSMs, so the following sections will further introduce the development of the Dirac
equation in condensed matter physics and related research on DSMs.

1.1 From Dirac equation to 3D Dirac semimetals (DSMs)

In 1929, shortly after Dirac wrote the Dirac equation containing 4×4 complex matrices, Weyl
proposed a simplified Dirac equation using only the 2×2 Pauli matrices [2]. This simplification
required the fermions to be massless. Weyl fermions are related to chirality or handedness, and
a pair of Weyl fermions with opposite chiralities can combine to form a Dirac fermion. In an-
other seemingly unrelated derivation in 1937, Conyers Herring studied the conditions for band
degeneracy in crystals, where accidental twofold degeneracies of energy bands can occur in 3D
crystalline materials even without any symmetry [11]. Near these ”accidental degeneracies” or
the touching points of bands, the energy dispersion of the electrons is typically linear and follows
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the Weyl equation, linking these touching points to massless Weyl fermions.

It is noteworthy that certain properties of relativistic Weyl fermions, such as the chiral anomaly,
also exist in nonrelativistic condensed matter physics. The chiral anomaly discussed by S. L.
Adler, J. S. Bell, and R. Jackiw in 1969 is an example of a quantum anomaly, which, in its
simplest form, proves that coupling a single Weyl fermion to an electromagnetic field leads to
the nonconservation of electric charge [12, 13]. Therefore, in condensed matter physics, to avoid
such nonphysical consequences, the net chirality of a pair of Weyl fermions must vanish within a
specific lattice realization, which is an example of the fermion doubling theorem1. Moreover, it
became clear that the chiral anomaly can significantly affect the properties of the crystals, further
cementing the link between band touchings and chiral fermions in 3D crystals [14].

In 2011, a groundbreaking article that introduced topological semimetals and Fermi arc surface
states referred to those touching points as ”Weyl points” (or ”Weyl nodes”) [15]. The topological
consequences of Weyl points began to be explored with the realization that the Berry curvature
plays a key role in determining the Hall effect [16, 17], and the Weyl points are related to “diabolic
points” discussed by Michael V. Berry as sources of Berry flux [18].

1.1.1 Topological electronic states and topological insulators

In daily life, the vortex is a common example of topological phenomena, and in condensed
matter physics, topological structures similar to vortices are concealed behind the wave functions
of electronic states. During 1972 and 1973, David J. Thouless from Princeton University and J.
Michael Kosterlitz from Brown University theoretically derived a model for vortex motion in 2D
superfluid/superconducting systems and predicted a unique phase transition of these systems with
temperature changes [19, 20]. From a topological perspective, the phase configuration with a sin-
gle vortex excitation cannot be continuously transformed into a nonvortex configuration, which
means that they belong to different types of topology. Therefore, vortex excitations are referred
to as topological excitations, and the phase transition induced by vortex excitation is known as
the Kosterlitz-Thouless transition (KT transition). The Soviet scientist Berezinskii also made
significant independent contributions to this concept, leading to the alternative name Berezinskii-
Kosterlitz-Thouless transition (BKT transition) [21]. Subsequent studies by Thouless and Koster-
litz extended the concept of topology to the electronic states of condensed matter physics [14],
leading to the well-known TKNN invariant (named after the authors Thouless, Kohmoto, Nightin-
gale, and den Nijs), i.e., a topological invariant in momentum space. This groundbreaking work
on the topological structure of electronic wave functions built the foundation for an important
research field and was one of the achievements of the 2016 Nobel Prize in Physics2.

The problem addressed by the TKNN invariant is the topological classification of electronic
wave functions, which is a very vast field. However, TKNN focused on a specific and relatively
simple class: (i) the wave functions are noninteracting, which means that they can be described
by a Slater determinant; (ii) the wave functions describe an insulating band structure. Since
the system is noninteracting, the many-electron wave function can be constructed by filling up

1The fermion doubling theorem, or the Nielsen-Ninomiya theorem, states that if a Weyl node with non-zero topological
charge exists in the 3D Brillouin zone, it must be accompanied by at least one other Weyl node to neutralize the total
topological charge in the entire Brillouin zone, so Weyl fermions always appear in pairs.

2The 2016 Nobel Prize in Physics was awarded to three theoretical physicists, David J. Thouless from the University
of Washington, J. Michael Kosterlitz from Brown University, and F. Duncan M. Haldane from Princeton University, for
their theoretical work on topological phase transitions and topological phases in condensed matter systems.
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Figure 1.2: In a CdTe-HgTe-CdTe quantum well, the 2D TI’s band structure is closely tied to the
thickness of the HgTe layer, with a critical value around 6.5 nm. (a) When the thickness of the
HgTe is less than 6.5 nm, the material exhibits a topologically trivial insulator phase. The low-
energy band structure features a bandgap, which characterizes its insulating properties. (b) When
the thickness of the HgTe layer exceeds 6.5 nm, the quantum well enters a nontrivial topological
insulator phase. The band still maintains an insulating gap, but the surface states exhibit a gapless
and linear dispersion, similar to that of graphene. This phase transition is crucial for the study of
TIs, where the surface states remain conductive even though the system remains insulating. The
above results are adapted from Ref. [22]. Similar topologically nontrivial surface states are also
observed in 3D TIs like Bi2Se3 and Bi2Te3, as discussed in Ref. [23].

the occupied single-electron states to form a Fock state. Furthermore, because the system is an
insulator, all occupied single-electron states fill the entire Brillouin zone. Thus, the classification
of the many-electron state can be simplified to the question of whether the single-electron wave
function has a topological structure throughout the Brillouin zone. The developments based on
the TKNN invariant have led to significant advances in condensed matter physics, including the
study of topological insulators (TIs), topological semimetals, quantum spin Hall effect, quantum
anomalous Hall effect, and so on [21].

In recent years, both theoretical predictions and experimental discoveries of 2D and 3D TIs
have led to significant exploration of the topological properties of electronic states in condensed
matter physics [22–34]. TIs represent a novel quantum state of matter, characterized by being
insulating in the bulk but conductive on their surface or edge. These surface or edge states exhibit
topological robustness against local defects and disorder. In 2005, C. L. Kane and E. J. Mele
proposed that time-reversal symmetry can result in a topological invariant, Z2, which identifies
the topological phase of an insulator [25]. This work expanded upon the foundational ideas
introduced by the TKNN theory to new levels. As shown in Fig. 1.2, a Z2 topologically nontrivial
insulator exhibits a topologically nontrivial phase. Although its bulk state has a large bandgap
similar to that of ordinary insulators, its surface state has a linear and gapless dispersion. The
surface state remains topologically stable with the spin-momentum locking of the electrons as
long as the time-reversal symmetry is preserved.

The topological classification based on symmetry, as seen in topological insulators, can be ex-
tended beyond time-reversal symmetry to encompass more crystal symmetries and can be applied
to metallic systems as well. An ideal topological metal features a degeneracy point formed by the
conduction and valence bands near the Fermi level, resulting in zero density of state at zero Fermi
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energy. Such materials are named as topological semimetals [35], with Weyl semimetals (WSMs)
and Dirac semimetals (DSMs) being the most representative and widely researched systems.

1.1.2 Weyl points, Berry phase, and Berry curvature in 3D Weyl semimet-
als

In 2011, a team from Nanjing University reported that Weyl points lead to the appearance of
exotic surface states in the form of Fermi arcs in the electronic states of materials [15]. This
result intuitively showed the topological properties of Weyl fermions in condensed matter and is
widely regarded as the first instance where topologically nontrivial electronic states were extended
from insulators to semimetals. For such semimetals with Weyl points, their electrons near the
Fermi level exhibit Dirac cone dispersion formed by the crossing of nondegenerate conduction
and valence bands, and their low-energy excitation can be described by the Weyl equation [2], thus
they are called Weyl semimetals (WSMs) [15]. Further research has shown that in WSMs, Weyl
points must appear in pairs with opposite chirality [14], while the spatial inversion symmetry (P)
or the time-reversal symmetry (T ) must be broken [36]. As a result, WSMs can be classified
into two types: magnetic WSMs, where T is broken, and nonmagnetic WSMs, where P is
broken. Nonmagnetic WSMs with broken centrosymmetry, such as the TaAs family, have been
theoretically predicted [37] and experimentally verified [38, 39]. Magnetic WSMs were the first
to be theoretically proposed [40–42], but the specific materials were identified very recently [43–
45].

The exploration of Weyl points starting from the Weyl equation offers a better understanding
of WSMs. Near a specific Weyl point, after resetting the spatial coordinates, the low-energy ef-
fective Hamiltonian is exactly the Weyl equation. One critical characteristic of the Weyl equation
is that its solutions possess a specific chirality [2], meaning that the spin of the particle is always
strictly aligned with the direction of its translational motion around the center of mass. This al-
lows for the classification of particles into two categories: left-handed and right-handed, with the
corresponding spins pointing anti-parallel and parallel to the momentum direction, respectively.
This is the origin of the chirality of the Weyl points. However, it is important to note that in
condensed matter physics, the spin at Weyl points is not the real spin of electrons but rather the
so-called “pseudospin”. In relativistic particle physics, the excitations near Weyl points are re-
garded as massless fermions, while in condensed matter physics, they can be understood in terms
of a magnetic field in momentum space.

Band theory describes the electronic states in a crystal using the single-particle wave function
|un(k)⟩, which is defined within a unit cell, where k and n represent the electron momentum
and the band index, respectively. The Berry connection corresponding to band n is defined as
An(k) = i⟨un(k)|∇k|un(k)⟩, which reflects the relationship between the occupied states near the
k point and formally can be viewed as a “vector potential” in momentum space. The Berry
phase of the wavefunction can be obtained by integrating the Berry connection along a path,
γn =

∮
C dk ·An(k), which is also equivalent to the surface integral of the Berry curvature. The

Berry curvature corresponding to band n is defined as Ωn(k) = ∇k ×An(k) [18, 46] and can be
interpreted as a ”pseudo-magnetic field” in momentum space. If we consider the Berry connection
as a gauge field, then the Berry curvature corresponds to the field strength [21]. From the per-
spective of condensed matter physics, Weyl points are singularities in Berry curvature, appearing
as monopoles of the “pseudo-magnetic field” in momentum space [47, 48]. Furthermore, starting
from the Berry curvature, the TKNN index is the surface integral of it over the 2D Brillouin zone,
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or the “magnetic flux” through the entire 2D Brillouin zone. Using the Berry curvature, one can
also elegantly prove the Nielsen-Ninomiya theorem in topological semimetals [21].

From the above introduction to WSMs, one can see that the study of topological properties in
topological semimetals is closely related to concepts like the Berry curvature and Berry connec-
tion. This relation is present in WSMs, but extends beyond that. The Weyl equation is a simplified
form of the Dirac equation, and if the electronic states in a 3D material can be described by the
Dirac equation, then similar topological properties and concepts such as Berry curvature will also
appear, just as they do in WSMs.

1.1.3 3D Dirac semimetals and fourfold degenerate Dirac points

As previously introduced, Weyl points in 3D materials can only appear when either T or P is
broken. When P is preserved, a Weyl point with a wave vector (or momentum) of k in the energy
band must be accompanied by another Weyl point with the same energy, opposite topological
charge, and a wavevector of −k [15, 41]. Conversely, if T is preserved, this pair of Weyl points
with opposite momenta must carry the same topological charge [49]. Since the net topological
charge in a Brillouin zone must be zero, time-reversal symmetry further requires the presence of
two additional Weyl points to compensate for the topological charge [49]. This indicates that if a
crystalline material satisfies combined symmetry, that is, both time-reversal and spatial-inversion
symmetries (P ·T ) are present, the Weyl points in the energy band can no longer be twofold
degenerate.

Interestingly, when P ·T symmetry is preserved, degenerate Weyl points with opposite charges
can stably exist at the same momentum. According to Kramers’ theorem, if the P ·T symmetry
is preserved, the energy bands will degenerate throughout the Brillouin zone [22]. As a result, a
pair of Weyl points with opposite chiralities will overlap, forming a fourfold degenerate singu-
larity in momentum space. This fourfold degenerate point is not topologically protected because
its net Chern number is zero, and the remaining momentum terms in the Hamiltonian might
mix the states, leading to the opening of a gap in the energy spectrum [36]. However, in some
special cases, the space group symmetry of the 3D crystal can prevent the effect of these remain-
ing terms, keeping the fourfold degenerate point intact. This type of degeneracy is known as
symmetry-protected degeneracy [36]. The fourfold degenerate point is formed by the overlap of
two Weyl points, and the low-energy excitations near it can be described by the Dirac equation.
Therefore, it is referred to as a Dirac point. Consequently, 3D Dirac semimetals (DSMs) were
theoretically proposed as a new class of topological material. Since a 3D Dirac point is formed by
a pair of Weyl points, and combined symmetry requires the presence of two pairs of Weyl points
in the system, a DSM will have two Dirac points located at ±k in momentum space.

The newly discovered 3D DSMs were initially described as ”3D graphene.” However, this
understanding is not appropriate. Both 3D and 2D Dirac systems have low-energy excitations
that can be described by the Dirac equation, but the Dirac points in a 3D DSMs are protected by
crystal symmetries. Therefore, even in the presence of spin-orbit interactions (probably strong),
the 3D Dirac points remain stable and degenerate. In contrast, spin-orbit coupling (SOC) removes
the degeneracy of the 2D Dirac points in graphene and opens a gap in the energy spectrum. The
band structure of this gapped graphene is the prototype quantum spin Hall insulator [25, 26].

The features of 3D WSMs and DSMs can be intuitively explored using a simple model. Con-
sider a 3D electronic system with two orbitals plus spin, We can expand a 4× 4 Hamiltonian
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Figure 1.3: The energy dispersion εsµ(0,ky,kz) corresponding to Eqs. (1.1) and (1.2) under dif-
ferent conditions of m, b, and b′. (a) m = b = b′ = 0 corresponds to a DSM. There is a fourfold
degenerate Dirac point. (b) m = 1, b = 0.5, and b′ = 0 correspond to a magnetic semiconductor.
(c) m = 0.5, b = 1, and b′ = 0 correspond to a WSM. At the Weyl points, there is only a twofold
degeneracy. The band inversion between the Weyl points illustrates the influence of the Berry
curvature on the band. (d) m = b = 0 and b′ ̸= 0 correspond to a nodal line semimetal.

matrix at the center of the Brillouin zone (the Γ point) [36, 50, 51]:

H(k) = vτx(σ ·k)+mτz +bσz +b′τzσz

=

(
mI +bσz +b′σx vσ ·k

vσ ·k −mI +bσz −b′σx

)
, (1.1)

where h̄= 1 is used for simplify, k=(kx,ky,kz) is the momentum of electrons, σ =(σx,σy,σz) are
the Pauli matrices for spin degrees of freedom; (τx,τy,τz) are the Pauli matrices for pseudospin
degrees of freedom, which relates to orbitals of atoms or sublattices, and I is a 2× 2 identity
matrix. This Hamiltonian also includes the velocity parameter v and the mass parameter m. Ad-
ditionally, b and b′ correspond to the intrinsic Zeeman fields in the x and z directions, which can
exist in magnetic materials that break time-reversal symmetry. Many interesting properties of Eq.
(1.1) will be related to m, b, and b′. When b′ = 0, the energy eigenvalues corresponding to Eq.
(1.1) are given by

εsµ(k) = s

√
m2 +b2 + v2k2 +2µb

√
v2k2

z +m2, (1.2)

where k = |k|, µ =±1 represents the spin degree of freedom, and s =±1 denotes the conduction
and valence bands. The results of the energy spectrum εsµ(0,ky,kz) are shown in Fig. 1.3: (a)
Taking m = b = 0, the energy spectrum corresponds to a single Dirac cone of a DSM, where the
fourfold degenerate Dirac point is located at k = 0. It is important to note that the results shown
are from a simple model; in actual 3D DMSs, the Dirac points appear in pairs. (b) The case
of |m| > |b| describes the states of a gapped magnetic semiconductor with the energy gap being
|E|< |m|−|b|. (c) |b|> |m| represents the WSM state, which differs from the DSM state in that its
conduction and valence bands are not degenerate; the intermediate conduction and valence bands
touch at two separate Weyl points at k = (0,0,±

√
b2 −m2/v). The band inversion between the

two Weyl points reflects the influence of the Berry curvature discussed in Sec. 1.1.2, with a van
Hove singularity occurring at kz = 0 in the inverted band. Furthermore, in the case where b′ ̸= 0

and m = b = 0, the eigenvalue is given by εsµ(k) = s
√

v2k2
x +[v

√
k2

y + k2
z +µb′]2, representing a

nodal line semimetal, as shown in Fig. 1.3(d). Fig. 1.4 further illustrates the relationship between
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Figure 1.4: The energy band and phase diagram based on Eq. (1.2) as functions of m and b. (a)
The WSM state varies with m/b when s =+1 and µ =±1. When m ̸= 0, the µ =+1 band has a
band gap, while the µ =−1 band still retains a pair of Weyl points. (b) The phase transition of the
µ =−1 band near m/b= 1 when s=+1. (c) Phase diagram based on Eq. (1.2), where the system
is a WSM for m/b < 1 and a gapped semiconductor for m/b > 1. For b = 0, a degenerate DSM
state can be observed, and at m = b = 0, there exists a massless Dirac fermion with a fourfold
degeneracy. Adapted from Ref. [50].

the energy dispersion based on Eq. (1.2) and the ratio of m to b, as well as the evolution of
electrons in the crystal momentum space with respect to m and b.

1.2 Research Progress on 3D Dirac Semimetals

In 2012, two papers almost simultaneously reported the existence of a 3D DSM state protected
by crystal symmetries in bulk β -cristobalite BiO2 and A3Bi (A = Na, K, Rb) [52, 53]. In 2013,
bulk Cd3As2 is also predicted to be a 3D DSM similar to that in Na3Bi [54]. During 2014 and
2015, a large number of experimental results, including ARPES measurements, directly verified
the existence of 3D DSM states in bulk Na3Bi and Cd3As2 [55–63], making them representative
platforms for studying the properties of 3D DSMs. Later, similar 3D DSM states have also been
reported in many other materials [64–67].

In 2015, a significant work proposed a new type of WSM state in WTe2 by breaking the Lorentz
invariance [68]. This state features tilted energy bands near the Weyl points and is termed type-II
WSMs. In 2016, a theoretical work predicted that a tilted energy band, akin to type-II WSMs,
could also be achieved in transition metal dichalcogenides (TMDs) such as PtX2 (X = S, Se,
Te) and PdTe2 through the breaking of Lorentz invariance. Moreover, this energy band retains a
fourfold degeneracy at the Dirac points and aligns with the Dirac equation, leading to the naming
of these new materials as type-II 3D DSMs [69]. In 2017, experiments confirmed the existence
of type-II 3D DSM states in PtTe2, PtSe2, and PdTe2 [70–73], greatly expanding topological
semimetals. Following this, numerous studies on type-II 3D DSMs have been reported [74–78].
Meanwhile, the materials Na3Bi and Cd3As2 mentioned above are classified as type-I 3D DSMs.
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Figure 1.5: The crystal structure, electronic structure, and Fermi surface of the bulk Na3Bi. (a)
Na3Bi belongs to hexagonal, with P63/mmc space group symmetry. (b) The Brillouin zone of
Na3Bi. (c) The electronic structure of Na3Bi calculated by first-principles, with the results with
and without SOC. (d) The Fermi surface of a type-I 3D DSM features a pair of Fermi arcs with
opposite spin textures between the two Dirac points, and the spin is degenerate at the Dirac points.
(e) When crystal symmetries are broken, the Fermi arcs open a gap at the Dirac points, at which
point the pair of Fermi arcs exhibit opposite chirality, and the phase transition from a DSM state
into a WSM state can be observed. (f) A type-I 3D DSM has a point-like Fermi surface at the
Dirac points. Adapted from Refs. [53, 54].

1.2.1 Discovery of type-I 3D Dirac semimetals

Based on Na3Bi, the lattice structure, the electronic structure, and the Fermi surface of type-
I 3D DSMs are shown in Fig. 1.5. The lattice structure shown in Fig. 1.5(a) indicates that
Na3Bi is isotropic in the x-y plane but anisotropic in the z direction. Figs. 1.5(b) and 1.5(c) show
that Na3Bi has a pair of Dirac points symmetrically located on the central axis of the Brillouin
zone. Moreover, the results considering spin-orbit coupling (SOC) in Fig. 1.5(c) indicate that the
Dirac points of the a 3D DSM protected by crystal symmetries have robustness and can strongly
suppress perturbations such as defects or impurities. Even in the presence of SOC, the fourfold
degeneracy is maintained, distinguishing 3D DSMs from graphene [25, 26, 53]. In WSMs, a pair
of Fermi arcs with opposite chirality connects two Weyl points [15]. However, as shown in Fig.
1.5(d), in DSMs the spins of a pair of Fermi arcs disappear at the Dirac points, representing a
different electronic state compared to WSMs [53, 54]. If crystal symmetries are broken, such as
compression 1% along the y axis of a bulk Na3Bi, a gap (about 6 meV) will open at its Dirac
points, leading to a topological phase transition from Dirac to Weyl semimetal states [53], as
shown in Fig. 1.5(e). Furthermore, Fig. 1.5 (f) illustrates the point-like Fermi surface at the
Dirac point in type-I 3D DSMs, which is an important characteristic that distinguishes them from
type-II 3D DSMs [69, 70].
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After the proposal of Na3Bi, the instability of its samples in air made experimental research
challenging. So, a new type-I 3D DSM, Cd3As2, was theoretically predicted [54]. As a well-
known compound, Cd3As2 was previously considered a narrow-gap semiconductor due to early
research limitations [79–81]. However, the new theories have shown that this material is similar
to Na3Bi as a type-I 3D DSM. Cd3As2 is very stable in air, making experiments relatively easier,
and although its lattice structure differs from that of Na3Bi, its DSM state also exhibits the Fermi
surface and the surface states of Fermi arcs as shown in Figs. 1.5(d)-(f). Thus, Na3Bi and Cd3As2
are still classified as the same type of DSMs [54].

Considering time-reversal, inversion, and space group symmetries, the effective k ·p Hamilto-
nian of a 3D DSM is described by a 4×4 matrix [53, 54]:

H(K) = εK × I +


MK Ak+ Dk− B∗

K
Ak− −MK B∗

K 0
Dk+ BK MK −Ak−
BK 0 −Ak+ −MK

 , (1.3)

where K = (k,kz) = (kx,ky,kz) is the 3D wave vector of the electron, I is a 4×4 identity matrix,
the z direction corresponds to the c axis in Fig. 1.5(a), k± = kx ± iky, εK = C0 +C1k2

z +C2k2,
MK = M0 −M1k2

z −M2k2. Furthermore, C0, C1, C2, M0, M1, M2, and A are band parameters,
which take different values in Na3Bi and Cd3As2, but both yield fourfold degenerate Dirac points.
This is due to the mechanism in which type-I 3D DSMs have stable Dirac points induced by band
inversion in a large parameter space [36]. BK = B3kzk2+ ∼ K3 represents higher-order terms
contributing to electron motion, arising from spin-orbit interactions, which only have significant
effects at large momenta. The terms containing D describe the breaking of crystal symmetries,
where D = 0 if crystal symmetries are preserved. The eigenenergy corresponding to Eq. (1.3)

can be analytically obtained as E±(K) = εK ±
√

M2
K +A2k2 + |BK|2, where + and − correspond

to the conduction and valence bands, respectively. For kz along the Γ−A symmetry line in Fig.
1.5(b), the electronic state has a mass term: M(kz) = M0 −M1kz, where M0M1 > 0 describes the
inverted band structure, revealing a pair of gapless points protected by c-axis rotational symmetry,
located at kz = ±kc

z = ±
√

M0/M1. Hence, we can find that the coordinates of the pair of Dirac
points are Kc = (0,0,±kc

z). The first-principles calculations in Fig. 1.5(c) show that for Na3Bi,
M0 ≈−0.087 eV and M1 ≈−10.64 eV, so the two Dirac points in Na3Bi are located at kz =±0.09
Å−1 away from the center of the Brillouin zone [53]. Similar results appear in Cd3As2, where the
two Dirac points are located at kc

z =±0.03 Å−1 [54].

The ARPES results for bulk Na3Bi are shown in Fig. 1.6 [56]. From Figs. 1.6(a)-(c), one can
observe the type-I 3D DSM state and the 3D Dirac points in Na3Bi. The experimentally observed
Dirac points are located at kc

z = ±0.08 Å−1, which is very close to the theoretical value of kc
z =

±0.09 Å−1, demonstrating the the theoretical predictions based on Eq. (1.3). Fig. 1.6(d) shows
a pair of Fermi arcs of a type-I 3D DSM, consistent with the theoretical results. Figs. 1.6(e)-
(f) further confirm that the BK terms in Eq. (1.3) is approximately zero for small momentum
and verify the fourfold degeneracy at the 3D Dirac point. This can simplify Eq. (1.3) by spin
degeneracy, which is particularly useful for studying low-energy and small-momentum problems
[53, 54]. In addition, other ARPES experiments [55], as well as scanning tunneling microscopy
(STM) and transport measurements at low temperatures, further confirmed the massless linear
dispersion around the Dirac points in Na3Bi [62].

Similar experimental results were obtained for Cd3As2, which also show good agreement with
theoretical predictions [54, 57–61]. Landau quantization and quasiparticle interference experi-
ments also validated the linear band structure near the Dirac points in Cd3As2 [82]. However, a
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Figure 1.6: ARPES measurement results for Na3Bi. (a) The 3D energy band of Na3Bi corre-
sponding to Eq. (1.3) with BK ≈ 0, where k represents the isotropic energy dispersion in the kx-ky
plane. (b) The ARPES experiment took seven 2D slices in the band of Na3Bi. Due to band sym-
metry, slices 1 and 7, 2 and 6, 3 and 5 are equivalent. The 3D Dirac points are observed in slices 2
and 6, and a pair of Fermi arcs is located between them. (c) ARPES results corresponding to the
slices in (b). The bulk Dirac point (BDP) appears in slice 2, and topological semimetal surface
states are visible in slice 4. (d) A pair of Fermi arcs, observed between the two Dirac points,
parallel to the k[001] direction of (b). (e) Spin-resolved ARPES measurements were taken along
two tangential lines in slice 4. (f) The results corresponding to (e) show that the 3D DSM exhibits
spin degeneracy near the Dirac points. The above results are adapted from Ref. [56].

notable discrepancy between theory and experiment was observed: the Fermi velocity in Cd3As2
was significantly higher than the theoretical predictions, leading to further refinement of the band
parameters [58, 82].

1.2.2 Investigations of type-I 3D Dirac semimetals

After the discovery of type-I 3D DSMs, their unique band structure leads to many novel phys-
ical properties [83]. Since Cd3As2 is highly stable in air while Na3Bi is unstable [58, 62, 84], the
experiments for studying Cd3As2 are relatively less demanding, leading to more research based
on Cd3As2. Because of the strong robustness in type-I DSMs, backscattering of electrons is sup-
pressed, resulting in ultrahigh carrier mobilities. Transport experiments have shown that Cd3As2
can achieve a carrier mobility of about 8.6×106 cm2V−1s−1 at a temperature of 5 K [85], while
in Na3Bi, the carrier mobility reaches approximately 9.1× 104 cm2V−1s−1 at 2 K [86, 87]. For
comparison, graphene has a reported carrier mobility of about 2×105 cm2V−1s−1 at 2 K [9], and
the highest carrier mobility reported so far is 9×106 cm2V−1s−1 in high-purity bismuth.

As introduced in Sec. 1.1.2 and Sec. 1.2.1, the electronic states of DSMs remain stable as long
as crystal symmetries are preserved. However, once the time-reversal symmetry is broken, the
DSM state undergoes a phase transition to the WSM state [53, 54]. One of the key characteristics
of the WSM state is the chiral anomaly [36], which causes many interesting physical phenomena.
In type-I DSMs, many effects arising from the chiral anomaly have already been discovered, such
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Figure 1.7: Topological phase transition in Cd3As2. (a) Negative magnetoresistance (MR) is
observed in Cd3As2 nanowire samples (diameter ∼ 200 nm) at different temperatures when an
external electric field is parallel to the magnetic field (B ∥ E). (b) The negative MR in (a) can
be modulated by a gate voltage. (c) The negative MR depends on the angle between the electric
field and the magnetic field, where the linear MR can be observed at B ⊥ E. (d) External pressure
can induce a phase transition in bulk Cd3As2, where the carrier mobility shows a sudden change
when pressure increases to around 2.5 GPa. (e) External pressure might induce a topological
superconducting phase in bulk Cd3As2. The above results are adapted from Refs. [90–93].

as the anomalous thermoelectric effect [88], nonlocal valley transport and the magneto-optical
Kerr effect [89], and, most notably, the negative magnetoresistance (MR) effect [89–91]. The
negative MR effect, caused by the chiral anomaly, is experimentally manifested when an electric
field is applied parallel to a magnetic field (B ∥ E), resulting in an observable negative MR. In
2015, a team observed the negative MR in a Cd3As2 nanowire sample with a diameter of ∼ 200
nm, as shown in Fig. 1.7(a). This phenomenon was even observed at room temperature [90],
indicating that the topological phase transition in type-I DSMs can occur at high temperature.
Fig. 1.7(b) further shows that this negative MR can be tuned by applying a gate voltage [90].
The angle-dependent negative MR shown in Fig. 1.7(c) further confirms that this phenomenon is
caused by the chiral anomaly in Cd3As2 [91].

In addition to a magnetic field, external pressure can also induce a topological phase transi-
tion in type-I DSMs. As shown in Fig. 1.7(d), the carrier mobility of a bulk Cd3As2 exhibits a
sudden change around 2.5 GPa, while mobility is nearly unaffected by pressure above or below
this point. This suggests that a phase transition has occurred in bulk Cd3As2 [92]. Fig. 1.7(e)
presents further research on the phase transition of Cd3As2, showing that type-I DSMs might have
a topological superconducting state under high pressure [93]. In Sec. 1.1, we introduced the rela-
tionship between the Majorana equation and the Dirac equation [3]. In condensed matter physics,
Majorana fermions, described by the Majorana equation, play a key role in topological supercon-
ducting states. Topological superconducting states represent a novel electronic state, character-
ized by the presence of Majorana fermions at the boundaries [94–96], and Majorana zero-energy
modes is an important tool in the study of topological superconductors [97]. Many experiments in
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Cd3As2, such as high-pressure superconductivity [93], point-contact-induced superconductivity
[98, 99], Josephson supercurrent [100–103], and proximity-induced superconductivity [104], all
demonstrate the great potential of type-I DSMs in the study of topological superconductivity and
Majorana zero-energy modes. Furthermore, the phase transition in Cd3As2 induced by external
pressure also affects its optoelectronic properties [105].

Transport experiments have also revealed other bulk-state properties of type-I DSMs. The
Shubnikov-de Haas (SdH) oscillations, which originate from the Landau quantization of electron
orbits in a strong magnetic field, are typically measured at very low temperatures. These oscilla-
tions can be described by the Lifshitz-Kosevich (LK) formula, cos[2π(F/B+φ)], where B is the
magnetic field strength, F is the oscillation frequency, and φ is the phase factor corresponding to
the topology of the Fermi surface [106]. By combining SdH oscillations with the L-K formula,
the Berry phase of topological materials can be experimentally determined. For 3D materials,
the Berry phase is usually π , corresponding to φ = ±1/8 (+ for holes, − for electrons) [46,
107]. Research on the Berry phase of Cd3As2 has revealed its unique topological structure, high-
lighting its differences from WSMs [60, 108–112]. Angle-dependent SdH oscillations or the de
Haas-van Alphen (dHvA) effect can be used to map the Fermi surface geometry of type-I DSMs
[110, 111], and the evolution of the Berry phase under certain conditions can also be determined
by analyzing quantum oscillations [109, 112]. These findings further show that type-I 3D DSMs
are excellent candidates for studying topological phase transitions. Linear MR sustained under
strong magnetic fields and various temperatures [108, 113], Landau level splitting under strong
magnetic fields [109], band splitting [114], and gate-tunable SdH oscillations [115], have also
been reported in type-I DSMs.

In addition to the bulk-state properties, type-I DSMs exhibit intriguing surface-state phenom-
ena. The Aharonov-Bohm (AB) effect observed in Cd3As2 nanostructures verifies the surface
states [116–118]. The transition from π-AB effect to AB effect, observed in Cd3As2 nanowire,
and the π-AB effect near the Dirac point confirm the helical spin structure of the topological sur-
face states [117], which corresponds to the Fermi arc structure shown in Fig. 1.5 [53, 54], and is
also shown in the ARPES observations in Fig. 1.6 [57–61]. Fano interference has been observed
between the bulk and surface states in Cd3As2. When there is scattering in both a continuous
and a discrete state, Fano proposed that interference between the scattering amplitudes of these
two states would result in Fano resonance [119]. The Fano effect observed in Cd3As2 reveals the
interaction between the bulk and surface states of type-I 3D DSMs [120], further shedding light
on the mechanism of the topological phase transition to the Weyl orbital states [116, 121].

Quantum Hall Effect (QHE) is a significant focus in the topological materials, and as early as
the theoretical predictions of type-I 3D DSMs, it was proposed that QHE could be observed in
Na3Bi and Cd3As2 [53, 54]. Taking Cd3As2 as an example, Eq. (1.3) represents the Hamilto-
nian of its bulk samples, where kz is unconfined [54]. In Cd3As2 thin films with quantum well
structures, kz will be quantized with the reduced dimension, related to the thickness of the sample
Lz = c as kz → sin(kzLz)/Lz [54]. This makes the Cd3As2 thin films change into a topological
insulator state. As the thickness further decreases, the band inversion is removed due to the fi-
nite size effect [122], leading to a thickness-dependent transition between trivial and nontrivial
topological phases, as shown in Fig. 1.2 [54]. In this case, QHE can be observed with varying
thickness. Interestingly, there is still a debate about the underlying mechanism that generates
QHE in type-I DSMs [123]. Various studies have proposed different interpretations of QHE in
type-I DSMs. Figure 1.8(a) illustrates QHE in samples with restricted thicknesses, where the
Fermi arc structure of the subbands in confined bulk states of Cd3As2 allows electrons to un-
dergo cyclotron motion [124, 125]. In 2017, a group theoretically predicted that the QHE can
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Figure 1.8: Quantum Hall Effect (QHE) in Cd3As2. (a) QHE observed in a 20 nm thick Cd3As2
nanosheet, induced by the subbands from the quantum confinement of bulk states. (b) Weyl
orbits present in a bulk Cd3As2 under an external magnetic field that breaks the time-reversal
symmetry. (c) Three pairs of Hall electrodes on a Cd3As2 wedge-shaped bulk sample with a
thickness gradient along the x direction, located at 59, 66, and 71 nm, respectively. (d) QHE
induced by Weyl orbits corresponding to (b) and (c), with different colors representing different
thicknesses shown in (c). (e) QHE induced by the nontrivial topological insulator state observed
in a 20 nm thick Cd3As2 thin film, with the Fermi level tuned by the gate voltage. (f) QHE
induced by the trivial topological insulator state observed in a sample with a reduced thickness of
14 nm, corresponding to (e). The above results are adapted from Refs. [125, 127, 129].

be induced by the Weyl orbits in Cd3As2 and Na3Bi [126], and then another group observed a
thickness-dependent QHE in a Cd3As2 sample with a thickness of 77 nm in 2019 [127], as shown
in Figs. 1.8(b)-(d). They proposed that Weyl orbits arising in Cd3As2 under broken time-reversal
symmetry allow electrons to execute cyclotron motion, thereby leading to QHE, with Weyl orbits
being thickness-dependent [126, 127]. The QHE resulting from the topological insulator states of
Cd3As2 was also investigated [128]. Furthermore, a recent study examined different QHE modes
in Cd3As2 thin films with varying thicknesses under gate-tuned Fermi levels, as shown in Figs.
1.8(e) and 1.8(f) [129], confirming the transition of the topological insulator states between trivial
and nontrivial phases [54]. These studies demonstrate the significant potential of type-I DSMs in
exploring the QHE of topological materials.

Type-I DSMs exhibit a gapless linear dispersion and ultrahigh carrier mobility, suggesting ex-
cellent optoelectronic properties. In earlier studies, Cd3As2 was considered a narrow bandgap
semiconductor [130–132]. However, the discovery of the DSM state in Cd3As2 has prompted
a re-evaluation of its various optoelectronic properties. In 2016, it was first reported that the
optical conductivity (OC) of bulk Cd3As2 is isotropic within the [001] plane and has an optical
absorption window [133], as shown in Fig. 1.9(a). Around the same time, anisotropic OC cor-
responding to its band structure, along with massless Kane electrons, was also reported through
magneto-optical experiments [134]. In 2017, theoretical predictions suggested that the Fermi arc
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Figure 1.9: (a) The in-plane optical conductivity of a bulk Cd3As2 at different temperatures. (b)
Spatial-resolved scanning photocurrent measurements of a Cd3As2 nanosheet. (c) Corresponding
to (b), the relationship between the pump-on (black) and pump-off (blue) probe-induced pho-
tocurrent and the pump-probe pulse delay. (d) Normalized transient reflection spectra measured
from bulk Cd3As2 at different temperatures using a 4 µm probe based on the negative peak sig-
nal. (e) Two relaxation times obtained by fitting (c) at different temperatures: the blue curve
corresponds to the slower time, whereas the red curve corresponds to the faster time. (f) At room
temperature, Cd3As2 heterojunctions exhibit excellent photoresponse over a very broad spectral
range. The above results are adapted from Refs. [133, 136, 139].

could lead to a high OC [135]. Experiments demonstrated that Cd3As2 nanosheets exhibited an
ultrafast transient time of approximately 6.87 ps [136], as shown in Figs. 1.9(b) and 1.9(c). This
indicates that photodetectors based on Cd3As2 could support detections of around 145 GHz, with
a strong light-matter interaction and a high responsivity of approximately 5.9 mA/W [136], out-
performing graphene-based photodetectors [137, 138]. Furthermore, as shown in Figs. 1.9(d)
and 1.9(e), ultrafast reflection experiments on bulk Cd3As2 revealed two distinct relaxation times
associated with light interaction. Analysis using a two-temperature model revealed that these
relaxation times correspond to electron-photon and electron-lattice (phonon) interactions, respec-
tively [139]. Additionally, experiments found that Cd3As2 heterojunctions have excellent pho-
toresponse over a wide spectral range at room temperature [140], as shown in Fig. 1.9(f). More
studies further showed the exceptional optoelectronic properties of type-I DSMs [141–152]. No-
tably, some experiments pointed out that Cd3As2 exhibits strong tunability in both optoelectronic
and thermoelectric applications [146]. Our research group also contributed to the identification of
a phonon absorption peak around 1.7–1.8 THz in Cd3As2 through terahertz experiments [152].

In addition to the above overview, more detailed research on type-I DSMs can be found in
the theoretical review by E. J. Mele on Weyl and Dirac semimetals [36] and the experimental
review by the research team of Academicians Zhimin Liao and Dapeng Yu of Peking Univer-
sity [123]. The discovery of type-I 3D DSMs and their excellent transport and optoelectronic
properties suggest a very high potential for applications. The new phenomena are closely related
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to the topological properties, which makes type-I 3D DSMs essential for further theoretical and
experimental studies.

1.2.3 Discovery of type-II 3D Dirac semimetals

In 2016, a research group theoretically proposed a new type of electronic state based on transi-
tion metal dichalcogenide (TMD) PtSe2. This novel electronic state can be described by Eq. (1.3)
as well, while maintaining crystal symmetries but breaking Lorentz invariance. In momentum
space, there exists a pair of fourfold degenerate Dirac points along with linear energy dispersion.
This new state is termed the type-II 3D DSM state [69]. The research group also predicted that
PtTe2, PdTe2, and PtBi2 are type-II 3D DSMs [69]. In 2017, experimental confirmations of PtTe2
[70], PtSe2 [71, 77], and PdTe2 [72, 73, 77] as type-II 3D DSMs were reported. These discoveries
significantly expanded the research field of Dirac semimetals and introduced many novel physical
properties. Later, many other type-II DSMs were also proposed [74–76, 78].

In the discovered type-II DSMs, PtTe2 is known for its stable properties and easy preparation
[70, 153, 154], making it a representative material. As shown in Figs. 1.10(a) and 1.10(b),
PtTe2 crystallizes in a trigonal CdI2-type lattice structure with the space group P3m1 (No. 164).
Bulk PtTe2 is formed by the periodic stacking of fundamental atomic layers, with weak van der
Waals interactions between the layers. In each layer, the Pt atoms are located between the Te
atoms above and below, while two Te atoms have inversion symmetry [70]. Figs. 1.10(c) and
1.10(d) depict the 3D Brillouin zone and the electronic structure calculated from first principles,
showing fourfold degenerate Dirac points located at ±D. In contrast to type-I DSMs caused by
band inversion, Dirac points in type-II DSMs are located at the contact points of electron and
hole pockets in the energy bands [69, 70], as shown in Figs. 1.10(e) and 1.10(f). An important
distinction between type-I and type-II DSMs is that the Fermi surface at the Dirac points in type-I
DSMs is point-like [53, 54], as shown in Fig. 1.5(f). In contrast, the Fermi surface at the Dirac
points in type-II DSMs outlines the contours of the electron and hole pockets [69, 70], as seen in
Fig. 1.10(f). Figs. 1.10(g) and 1.10(h) present ARPES results that confirm the existence of the
type-II DSM state [70]. Similar properties have been experimentally verified in PtSe2 [71, 77]
and PdTe2 [72, 73, 77], indicating that these TMDs have very similar properties [77].

The effective Hamiltonian of type-II 3D DSMs is also described by Eq. (1.3). The corre-

sponding eigenvalue is given by E±(K) = εK ±
√

M2
K +A2k2 + |BK|2. The two Dirac points are

located at Kc = (0,0,±kc
z), and this result is formally consistent with type-I DSMs. However, if

we expand Eq. (1.3) around the Dirac point Kc and retain only the linear terms, one can obtain
[69]:

Hc(K) =

(
h(K) 0

0 h∗(K)

)
, (1.4)

where h(K) = A(kxσx − kyσy)− 2kzkc
z(C1I −M1σz), I is 2× 2 identity matrix, (σx,σy,σz) are

Pauli matrices, C1, M1, and A are band parameters. The corresponding energy dispersion reads as

E±(K) = T (K)±U(K) = 2C1kc
zkz ±

√
A2(k2

x + k2
y)+(2M1kc

zkz)2, (1.5)

where T (K) is a linear kinetic term and U(K) is the potential component. These two components
can be used to distinguish between type-I and type-II DSMs. For the case of Na3Bi and Cd3As2
where U(K) > T (K) follows the Lorentz invariance [53, 54], the Dirac cone is isotropic and a
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Figure 1.10: (a), (b) Lattice structure of PtTe2 from side and top views, respectively. The green
balls represent Pt atoms, and the red balls represent Te atoms. (c) 3D Brillouin zone of PtTe2,
where the two Dirac points are located on the high-symmetry axis on both sides of the Γ point at
±D, shown in red points. (d) Electronic structure of PtTe2 based on first-principle calculations,
where two Dirac points are formed by the contact between the electron and hole pockets. (e) A 3D
schematic of the electron and hole pockets. (f) The 2D contour of the electron and hole pockets
when the electron energy is equal to the Dirac point energy ED. (g), (h) Show the Dirac points of
PtTe2 observed in ARPES experiments, where the Dirac cone tilts along the kz direction. (l), (i)
Schematic diagrams of type-I and type-II 3D Dirac cones, respectively. The type-I Dirac cone is
isotropic, whereas the type-II Dirac cone is anisotropic and tilted near the Dirac point. The results
are adapted from Ref. [70].

point-like Fermi surface appears at the Dirac point, as shown in Fig. 1.5(f) and Fig. 1.10(l).
On the other hand, when using the band parameters of PtSe2 and PtTe2 [69, 70], U(K) < T (K)
can be found along the kz direction accompanied by the breaking of the Lorentz invariance, and
anisotropic and strongly tilted Dirac cones appear along the kz direction near the Dirac point,
as shown in Fig. 1.10(i). The unique tilted band in type-II DSMs will lead to novel properties,
further expanding the research field of 3D DSMs.

1.2.4 Investigations of type-II 3D Dirac semimetals

After the type-II 3D DSMs were discovered, research on their transport properties brings many
interesting results. First, SdH and dHvA experiments in type-II DSMs revealed their high carrier
mobilities [155–159], which, although lower than that of Cd3As2 [85], can still reach approxi-
mately 104 cm2V−1s−1 [157]. Studies on Fermi surface structure have uncovered a nontrivial
Berry phase, confirming the nontrivial topological properties of these materials [155, 157]. In
contrast to type-I DSMs [86], type-II DSMs exhibit anisotropic transport properties [156, 157].
Additionally, they have ultrafast quantum lifetimes that are less than the picosecond scale [155–
159]. Further experiments also found their ultrahigh transport conductivity [160–162]; as shown
in Fig. 1.11(a), the conductivity of PtTe2 can reach the order of 106 S/m at room temperature.

As topological semimetals, type-II DSMs theoretically possess a phase transition from a DSM
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Figure 1.11: (a) Ultrahigh transport conductivity of PtTe2 thin films. (b) Hall resistivity of PdTe2.
(c) Anisotropic resistivity of PdTe2 obtained from the fitting in (b). (d) Planar Hall effect (PHE)
of PdTe2, with the inset showing a schematic diagram of the measurement method. (e) In PtTe2,
a topological phase transition from a DSM state to a semiconductor state occurs with changes in
thickness. The gradient of the different sample thicknesses is 1 trilayer (1-TL), with the thick-
ness increasing from 1-TL to 5-TL from left to right. The upper part shows the results of the
first-principles calculations, and the lower part compares the calculated results with the ARPES
experiments. The results are adapted from Refs. [159, 162, 170].

state to a WSM state when the time-reversal symmetry is broken. However, the negative MR
in these materials is difficult to observe because their chiral anomalies are often covered by a
large orbital MR [163]. In recent years, a new phenomenon, called the planar Hall effect (PHE)
has been discovered in the study of WSMs, which is directly related to the chiral anomaly [164,
165], offering a new method to study the topological properties [166]. Unlike the Hall effect,
where the electric field, transverse voltage, and magnetic field are perpendicular to each other,
in PHE studies the electric field, transverse voltage, and magnetic field are coplanar. In this
case, the chiral anomaly in DSMs and WSMs can produce a noticeable transverse current in the
plane, and its amplitude theoretically equals the chiral negative MR [164, 165]. In DSMs and
WSMs, the transverse resistivity ρyx related to PHE and the longitudinal resistivity ρxx related
to anisotropic magnetoresistance (AMR) are given by [164, 165]: ρyx = −∆ρ sinθ cosθ and
ρxx = ρ⊥ − ∆ρ cos2 θ , where ∆ρ = ρ⊥ − ρ∥ is the anisotropic resistivity caused by the chiral
anomaly. ρ⊥ and ρ∥ are the resistivities when the magnetic field B is perpendicular and parallel
to the electric field E, respectively. In principle, when B ∥ E, there is no Lorentz force, so ρ∥ and
ρ⊥ should equal the resistivity in the absence of an external field, thus making ∆ρ = 0, leading
to ρyx = 0 and ρxx being constant. However, in type-II DSMs, the chiral anomaly makes ρ∥ to
depend on B, resulting in ∆ρ ̸= 0, and both ρyx and ρxx exhibit periodic variations. Fig. 1.11(b)
shows the periodic variation of ρyx observed in PdTe2 [163], while further analysis in Figs. 1.11(c)
and 1.11(d) finds the AMR and PHE in PdTe2 caused by the chiral anomaly (∆ρ ∝ B1.46) [163].
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Similar PHE and AMR have also been reported in type-I DSM Cd3As2 [167], type-II DSMs PtTe2
[168] and VAl3 [169], which confirms the existence of the WSM state in 3D DSMs.

Apart from the band structure, another important difference between type-II and type-I DSMs
lies in their electronic states as the thickness is reduced. As shown in Fig. 1.8, type-I DSMs
undergo a phase transition from a DSM state to a topological insulator state when the thickness
decreases, allowing observation of the QHE in their thin films. In contrast, type-II DSMs have
a phase transition from a DSM state to a semiconductor state [170]. In 2019, first-principles
calculations investigated the electronic states of Pt sulfides as a function of thickness, suggesting
that PtTe2 has a phase transition from a DSM state to a semiconductor state when thickness
decreases [170]. In 2020, this phase transition in PtTe2 was experimentally confirmed. As shown
in Fig. 1.11(e), ARPES measurements of PtTe2 samples with different thicknesses indicate that
the DSM state remains stable until two trilayers, at which point it transitions to a semiconductor
state [171]. This result indicates that type-II DSMs do not meet the conditions for the QHE, as
seen in type-I 3D DSMs. However, they still show a novel phase transition, which remains of
great research value.

As Dirac materials with high mobility and gapless properties, type-II DSMs also have excel-
lent optoelectronic properties. Fig. 1.12(a) shows the calculated anisotropic plasmon modes of
the bulk PtTe2, while Fig. 1.12(b) presents the experiment of high-resolution electron energy loss
spectroscopy (HREELS) at different angles [172]. In Fig. 1.12(c), the green symbols correspond
to the experimental results from Fig. 1.12(b), where a match between theory and experiment
confirms the collective excitations of 3D Dirac fermions in bulk PtTe2 [172]. Fig. 1.12(d) shows
the optical absorption of PtSe2 samples of varying thicknesses, where the results of the bilayer
samples are clearly distinct from those of the multilayer samples [173]. Some theoretical and
experimental studies have also reached similar conclusions [174–176], and thickness-tunable op-
toelectronic properties can also be observed in PdTe2 [177]. Fig. 1.12(e) shows the unique nega-
tive terahertz photoconductivity (NTP) in PtTe2 samples [178], which arises from its tilted Dirac
cone, exhibiting distinct terahertz photoconductivity compared to type-I DSMs [see Fig. 1.9(d)].
Fig. 1.12(f) further demonstrates the thickness-tunability of NTP in PtTe2 [178]. Further studies
by this research group found that PtTe2 has an ultrafast energy relaxation time for electron-photon
interactions [179], the fastest being on the order of 102 fs. Type-II DSMs also have high potential
for applications. As shown in Fig. 1.12(h), PtTe2 has a wide photoresponse range [180, 181], with
a response time of ∼ 34 µs and a responsivity of about 0.04 mA/W. Van der Waals heterojunctions
based on PtTe2 also show excellent photoresponse performance at room temperature [182, 183].
Other studies on PtTe2 and similar DSMs have also revealed the excellent optoelectronic proper-
ties of type-II DSMs [184–188]. Furthermore, high-frequency rectifiers based on type-II DSMs
[189], highly efficient spintronic terahertz emitters based on PtTe2 [190], and defect-induced and
helicity-dependent terahertz emission [191] are also reported, demonstrating the high potential of
type-II 3D DSMs in advanced electronic and optoelectronic device applications.

1.3 Research goals of the thesis

Extensive research on 3D DSMs has discovered numerous transport and optoelectronic phe-
nomena. However, many of the experiments lack adequate theoretical explanations. Moreover,
the models and methods used in existing theoretical studies tend to be simplistic, overlooking
certain characteristics of the electronic states, which limits the theoretical findings. Thus, the pur-
pose of this thesis is to provide theoretical explanations for some of the experiments, as well as to
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Figure 1.12: (a) Theoretical results of anisotropic plasmon modes in bulk PtTe2. (b) Experimen-
tal results of angle-resolved high-resolution energy-loss spectroscopy for bulk PtTe2. (c) Plasmon
modes of type-II 3D Dirac fermion in bulk PtTe2 obtained by combining the results of (a) and (b).
(d) Optical absorption experiment for PtSe2 samples of varying thicknesses. (e), (f) Negative
terahertz photoconductivity observed in PtTe2 samples and the result of its modulation by thick-
ness, respectively. (g) Ultrafast energy relaxation times of electron-photon interactions observed
in PtTe2 thin films. (h) PtTe2 exhibits good photoresponse properties across a wide spectral range.
Adapted from Refs. [171, 172, 177–179].

further supplement and expand upon existing theoretical work. Meanwhile, this thesis will also
explore the optoelectronic and transport properties of 3D DSMs from a theoretical perspective.
The research goals of this thesis, based on the current research status, is as follows.

Experiments with type-I 3D DSMs have reported the isotropic in-plane optical conductivity
(OC) and optical absorption windows of their bulk samples [133], while their anisotropic OC
was also discovered [134]. However, the anisotropic OC cannot be explained using a simple
energy dispersion such as a 3D Dirac cone; the OC caused by interband electronic transitions
under higher photon energies shows nearly temperature-independent behavior, which remains
unexplained; and the reason for the optical absorption windows in OC has not been addressed.
The topological nature can affect the electronic excitations near the Dirac point in type-I DSMs.
However, to date, no work has specifically analyzed the effect of topological properties on their
OC. Therefore, the first goal of this thesis is to conduct a theoretical study of the OC of type-
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I DSMs based on Na3Bi. The first work aims to provide reasonable explanations for the
experiments and to explore the connections between the topological properties and the OC
of such materials.

The plasmon is the quantum of collective electron excitations and can be regarded as a quasi-
particle of plasma oscillations. Phenomena related to plasmons can be traced back to 1902 [192],
and it wasn’t until 1941 that Fano conducted preliminary theoretical research on this phenomenon
[193]. In 1957, the metal plasma was proposed [194] and was quickly validated experimentally
[195]. Later, surface plasmon resonance [196] and surface plasmon excitation [197, 198] were
discovered, thus establishing a relatively complete theory for the plasmon. With continuous ad-
vances in materials science and techniques in recent years, an increasing number of novel studies
related to plasmons have contributed to a thriving and promising research field: Plasmonics [199].
Plasmonics holds significant application prospects in many fields, such as high-density data stor-
age, super-resolution imaging, and negative refractive materials [200]. In recent years, plasmon
studies of 2D Dirac systems, such as graphene, have made great progress, bringing many novel
physical phenomena [201]. As a new topological material, type-I DSMs are expected for rich and
interesting plasmon properties due to their topological nature and the unique 3D Dirac fermions.
However, research on the plasmon of type-I DSMs is very limited, and existing studies often
rely on the very simplistic model: EK,s = sh̄vF K (where s is the band index and vF is the Fermi
velocity) [202–204]. This simplified band ignores the topological properties, leading to discrep-
ancies between the theoretical and experimental results [36]. Therefore, existing research on the
plasmons of type-I DSMs is insufficient. Hence, the second goal of this thesis is to explore the
plasmon properties of type-I DSMs based on a complete effective Hamiltonian and band
structure and to further analyze the effect of topological nature on their collective excita-
tions.

In Sec. 1.2.4, we introduced the excellent optoelectronic properties of type-II 3D DSMs. How-
ever, the research on the optoelectronic properties of type-II DSMs is mainly based on their thin
films, while studies focusing on bulk samples are very limited. As shown in Figs. 1.10 and 1.11,
the thin films of type-II DSMs have a semiconductor state, while their bulk samples retain the
anisotropic and tilted Dirac cones, indicating that their bulk and thin-film samples should have
different optoelectronic properties. Currently, there are only a few theoretical studies on the opti-
cal conductivity (OC) of tilted 3D Dirac cones, and these works do not consider specific materials;
they only study the effect of the tilt of the Dirac cone on OC [205, 206]. This suggests that the OC
of bulk samples of type-II DSMs remains unclear. Therefore, the third goal of this thesis is to
conduct a theoretical study of the OC of the type-II DSM PtTe2, to discover the phenomena,
mechanisms, and the influence of the tilted Dirac cone on the OC, as well as how it changes
with sample conditions such as temperature and electron density.

As introduced in Sec. 1.2.4, many experiments have shown that type-II DSMs have high carrier
mobility, anisotropic transport properties, and ultrafast lifetimes [155–159]. These experimental
works suggest that these transport features arise from the Dirac fermion nature and the tilted
Dirac cone of type-II DSMs. However, to date, there has been no systematic theoretical work
that provides a reasonable explanation for these phenomena. At low temperatures, the trans-
port properties, such as the momentum lifetime and carrier mobility, are primarily contributed by
carrier-impurity scattering. Currently, there is very little research on background impurity scat-
tering in type-II DSMs, indicating that the physical mechanisms for many experiments remain
unclear. Among the type-II DSMs studied, PtTe2 was the most extensively researched, and the
corresponding transport experiments are quite comprehensive. Therefore, the fourth goal of
this thesis is to start from the effective Hamiltonian of bulk PtTe2, calculate its transport
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and quantum lifetimes, and compare and analyze the theoretical results with existing ex-
periments, which will further provide a detailed explanation for the transport properties of
type-II 3D DSMs.

In summary, the research goals of this thesis are based on the many novel physical properties
discovered in 3D DSMs and the experiments that still require explanation. The focus of this thesis
is to conduct theoretical research on the OCs, plasmons, and momentum lifetimes of 3D DSMs,
exploring the optoelectronic and transport properties of 3D DSMs.

1.4 Main content and structure of the thesis

This thesis focuses on the study of the optical and transport properties of 3D DSMs. The
research employs the random phase approximation (RPA) dielectric function method to investi-
gate the plasmon modes of type-I 3D DSMs. The anisotropic OCs of both type-I and type-II 3D
DSMs are studied using the energy balance equation derived from the Boltzmann equation. The
momentum lifetimes of type-II 3D DSMs are evaluated using the momentum balance equation
derived from the Boltzmann equation. The main content and structure of the thesis are outlined
as follows.

1.4.1 Main content of the thesis

The first work focuses on the anisotropic OC of the type-I 3D DSM Na3Bi. By using the band
structure with the spin-degeneracy [56], the 4×4 Hamiltonian matrix for Na3Bi can be simplified
into two time-reversal matrices. We first perform a detailed analysis of the band structure features
of type-I DSMs, such as band inversion and Berry curvature in the momentum space, by calculat-
ing the energy dispersion, density of states, and Fermi level. Then, we consider the cases where
linearly polarized light is incident parallel and perpendicular to the n-doped bulk Na3Bi. Using
the energy balance equation, we calculate the OC of Na3Bi in different directions and provide
explanations for the results based on the band features. Additionally, we further investigate how
the OC of Na3Bi is influenced by energy relaxation time, temperature, and electron density.

The second work in this thesis is a theoretical study for the plasmon modes of type-I 3D DSMs.
Based on the effective Hamiltonian, we calculate the plasmon dispersion and energy loss spectra
for Na3Bi at both high and low electron densities using the RPA dielectric function. Meanwhile,
we also calculate the plasmon modes for another type-I DSM, Cd3As2, at both higher and lower
electron densities to explore some differences between these two similar materials. From the band
features with the calculated plasmon results, we provide an explanation for the collective excita-
tions in type-I DSMs and a comparative analysis with graphene and conventional 3D materials.
Furthermore, we also analyze how the band inversion and Berry curvature of type-I DSMs affect
their plasmons by examining the results for higher and lower electron densities.

The third work in this thesis focuses on the OC of bulk PtTe2, a representative type-II DSM.
Starting from its effective Hamiltonian, we consider the case where linearly polarized light in-
cident either parallel or perpendicular to its n-doped bulk sample, and then we use the energy
balance equation to investigate its OC in different directions. We identify and analyze the unique
characteristics of its OC, while also discussing similarities with Na3Bi and graphene. From the
anisotropic and tilted Dirac cone of type-II DSMs, we explain the physical mechanism behind the
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OC of PtTe2 and analyze the effect of the tilted Dirac cone on its OC. Additionally, we further
discuss how specific conditions, such as temperature, energy relaxation time, and electron density
of the bulk sample affect its OC.

The fourth work of this thesis theoretically studies the momentum lifetimes of bulk PtTe2,
which are induced by electron-impurity scattering at low temperature. Using the RPA dielectric
function, we first obtain the electron-electron screening length of the bulk PtTe2 at low temper-
ature. With the momentum balance equation, we calculated the in-plane momentum lifetimes
for electron-impurity scattering, taking into account the effects of electron-electron screening.
The calculations include the transport lifetime due to large-angle scattering and the quantum life-
time due to small-angle scattering. For the out-of-plane case, constrained by the lattice and band
structure, we calculate only the out-of-plane quantum lifetime. By comparing the theoretical cal-
culations with existing experiments, we first verify the validity of our theoretical results, and then
further analyze and discuss the characteristics, mechanisms, and influence of the tilted Dirac cone
on the momentum lifetimes in type-II 3D DSMs.

1.4.2 Structure of the thesis

The thesis is structured as follows:

In chapter 2 we provide a detailed introduction to the research methods used in this thesis. The
random phase approximation (RPA) dielectric function theory and methods for studying plasmon
modes are introduced. The Boltzmann equation, along with its derived methods, such as the
energy balance equation and the momentum balance equation, is introduced.

In chapter 3 we first present calculations of the band structure, Fermi level, and electron density
of states for bulk Na3Bi. Then, the OC of the n-doped bulk Na3Bi are calculated and discussed.

In chapter 4 we apply the RPA dielectric function to calculate the anisotropic plasmon modes
and corresponding energy loss spectra in n-doped bulk Na3Bi and Cd3As2. The plasmon modes of
type-I DSMs are analyzed, the differences between the plasmon properties of Na3Bi and Cd3As2
are discussed, and the effects of Berry curvature on the plasmons in these materials are further
investigated.

In chapter 5 we begin with the band structure and Fermi level of the bulk PtTe2, followed by
calculations of the anisotropic OC of its n-doped bulk sample using the energy balance equation.
The physical mechanisms behind the calculated OC are analyzed based on the band structure, and
the effects of energy relaxation time, temperature, and electron density on its OC are explored.

In chapter 6 we utilize the RPA dielectric function and momentum balance equation methods
to investigate the transport lifetime and quantum lifetime due to electron-impurity scattering in
the n-doped bulk PtTe2. By comparing the theoretical results with the experimental data, the
transport properties of the bulk PtTe2 are analyzed.

In chapter 7, the research work of this thesis is summarized and conclusions are offered. An
outlook on future research is proposed as well.
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Theoretical approaches

In the study of plasmon modes in solid materials such as metals, the dielectric function in the
framework of the random phase approximation (RPA) within the linear response theory is an ef-
ficient method to calculate the plasmon properties of intrinsic systems [207]. Meanwhile, when
investigating the optoelectronic and transport properties of solid materials, three main approaches
are commonly used: the Boltzmann equation, the quantum Boltzmann equation, and the Kubo
formula for the current-current correlation function. In general, these three methods yield con-
sistent results in terms of material properties [36, 208], but the Boltzmann equation has specific
advantages in transport studies [208], which we will introduce later. Moreover, directly solving
the Boltzmann equation for complex systems can be very challenging. However, the energy bal-
ance and momentum balance equation methods, derived from the Boltzmann equation, serve as
powerful tools to study optical conductivity (OC) and momentum lifetimes in electronic systems
and help avoid the difficulties when solving the Boltzmann equation directly [209].

Therefore, this thesis adopts the RPA dielectric function to study the plasmon properties of
type-I DSMs, the energy balance equation to calculate the OCs of both type-I and type-II DSMs,
and the momentum balance equation to calculate the momentum lifetimes in type-II DSMs. In
this chapter, we will provide an introduction to the theoretical approaches used in the thesis.

2.1 Random phase approximation (RPA) dielectric function

The Lindhard response function, more commonly known as the random phase approximation
(RPA) dielectric function, is a theoretical method used to investigate the static ε(q) or dynamic
ε(q,ω) dielectric constant and related optoelectronic properties of materials. The RPA dielec-
tric function can be derived through various approaches [208], such as the self-consistent field
equation [210] and the Green’s function Feynman diagram method [211].

In this thesis, the RPA dielectric function is introduced from the fluctuations of electronic
states caused by interactions [207]. For the derivation of the response functions we begin with the
Heisenberg equation and write the time evolution of the electron number density operator N as

ih̄
∂

∂ t
N = [H,N]. (2.1)
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Assuming that the effective Hamiltonian of a 3D electronic system is H0, the corresponding
Schrödinger equation is

H0|k, l⟩= Ek,l |k, l⟩, (2.2)

where Ek,l is the eigenvalue, |k, l⟩ is the electronic state, k = (kx,ky,kz) is the 3D wave vector, and
l is the band index. In solid materials, we use the Bloch wave function to describe the electronic
state, which reads

|k, l⟩= Ω
−1/2uk,l(r)eik·r, (2.3)

where Ω is the volume of the system, and uk,l(r+R) = uk,l(r) with R a Bravais lattice vector.
These states are eigenstates of both H0 and N0, with eigenvalues Ek,l , and obey the Fermi-Dirac
distribution function:

f (Ek,l) = [e(Ek,l−EF )/kBT +1]−1,

with EF being the Fermi energy and kB being the Boltzmann constant. When a 3D electronic
system interacts with an external field with energy V (r, t), the total Hamiltonian becomes H =
H0 +V . The particle density in the system, N(r, t), has two components: one is the unperturbed
density N0 corresponding to H0, and the other is the density fluctuation δN(r, t) induced by the
interaction between the system and the external field. Thus, N(r, t) = N0 +δN(r, t), leading to

ih̄
∂

∂ t
δN = [H0,δN]+ [V,N0], (2.4)

where the second order terms in the perturbation (e.g. V δN) can be neglected.

In what follows, we first relate the induced charge density to the total potential energy V (r, t)
acting on our electron system. Taking the matrix elements of the Heisenberg equation between
the initial state |k, l⟩ and the final state |k+q, l′⟩ with q = (qx,qy,qz) being the change in electron
momentum caused by the total external potential, one can obtain

ih̄
∂

∂ t
⟨k+q, l′|δN|k, l⟩= ⟨k+q, l′|[H0,δN]|k, l⟩+ ⟨k+q, l′|[V,N0]|k, l⟩. (2.5)

Because these states are eigenstates of H0, the first term on the right-hand side can be written as

⟨k+q, l′|[H0,δN]|k, l⟩= (Ek+q,l′ −Ek,l)⟨k+q, l′|δN|k, l⟩,

and the second term can be expressed as

⟨k+q, l′|[V,N0]|k, l⟩=[ f (Ek,l)− f (Ek+q,l′)]

×⟨k+q, l′|∑
q′

V (q′, t)eiq′·r|k, l⟩, (2.6)

where the perturbing potential energy V (r, t) has been expanded in its Fourier components. Note
that V (r, t) includes both the external and the induced potential. Now we substitute the explicit
form of the Bloch states given above into the matrix element of Eq. (2.6), yielding

⟨k+q, l′|∑
q′

V (q′, t)eiq′·r|k, l⟩= Ω
−1

∑
q′

V (q′, t)
∫

Ω

dru∗k+q,l′uk,lei(q′−q)·r, (2.7)
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where the volume integral involves the entire medium. As a consequence of the periodicity of
uk,l , it is possible to rewrite the above integral as an integral over the unit cell with an additional
summation over all the unit cells. A change of variables r = Rn + r′, where Rn is the position of
the nth unit cell, and r′ is the position within the unit cell, yields

⟨k+q, l′|∑
q′

V (q′, t)eiq′·r|k, l⟩=Ω
−1

∑
q′

∑
n

ei(q′−q)·RnV (q′, t)

×
∫

∆

dr′u∗k+q,l′uk,lei(q′−q)·r, (2.8)

where the integral extends over the volume of a single unit cell ∆, and the index n represents the
summation over all unit cells. We note that ∑n ei(q′−q·Rn) is negligible unless q′−q = K, where
K = 2π/R is a reciprocal lattice vector. In the reduced zone scheme, we take K = 0 and therefore

∑
n

ei(q′−q)·Rn = (Ω/∆)δq′q,

with Ω/∆ being the total number of unit cells. Substituting this into Eq. (2.8) and using the
δ -function to perform the summation over q′ leads to

⟨k+q, l′|∑
q′

V (q′, t)eiq′·r|k, l⟩=V (q, t)∆−1
∫

∆

u∗k+q,l′(r)uk,l(r)dr

=V (q, t)⟨k+q, l′|eiq·r|k, l⟩∗, (2.9)

where we have made use of ⟨k+q, l′|eiq·r|k, l⟩∗ with the definition of ⟨ ⟩∗ denoting the integral
over the volume of an unit cell. With these expressions, Eq. (2.5) is cast into the following form:

ih̄
∂

∂ t
⟨k+q, l′|δN|k, l⟩=(Ek+q,l′ −Ek,l)⟨k+q, l′|δN|k, l⟩

+[ f (Ek,l)− f (Ek+q,l′)]V (q, t)⟨k+q, l′|eiq·r|k, l⟩∗. (2.10)

This is a time-dependent equation for δN, the contribution to the density operator resulting from
the induced particle density.

Next, we can use Eq. (2.10) to derive an expression for the complex dielectric function ε̂(q,ω).
Starting from the total potential Φ(q, t) = Φext(q, t)+Φind(q, t), where Φext(q, t) and Φind(q, t)
are the external scalar potential and the induced potential, respectively, the dielectric constant
ε̂(q, t) is defined as

Φ(q, t) =
Φext(q, t)
ε̂(q,ω)

(2.11)

The potential Φ(q, t) leads to changes in the electronic density of states; these changes in turn can
be obtained using the Heisenberg picture by treating Φ(q, t) as a perturbation. Variations in the
state density cause an induced potential Φind(q, t) through Poisson’s equation, and, through the
selfconsistent equations above, this finally yields the expression of the dielectric function in terms
of the changes in the electronic states. Then, we use the so-called adiabatic approximation, where
we assume that the perturbation is turned on gradually starting at t →−∞ with a time dependence
eηt , and we will take the limit η → 0 after appropriate expressions for the response have been
derived. Consequently, we assume that the time dependence of the external scalar potential has
the form

Φext(r, t) = lim
η→0

Φext(r,0)e−iωt+ηt , (2.12)



28 CHAPTER 2. THEORETICAL APPROACHES

Since the Fourier components are independent of each other, it is sufficient to consider only one
component. We also assume that the induced screening potential energy, the total potential energy,
and the density fluctuations all have the same time dependence e−iωt+ηt . With this we can rewrite
Eq. (2.10) as

lim
η→0

(h̄ω − ih̄η)⟨k+q, l′|δN|k, l⟩=(Ek+q,l′ −Ek,l)⟨k+q, l′|δN|k, l⟩

+[ f (Ek,l)− f (Ek+q,l′)]V (q, t)⟨k+q, l′|eiq·r|k, l⟩∗, (2.13)

or, after some rearrangements,

⟨k+q, l′|δN|k, l⟩=V (q, t)⟨k+q, l′|eiq·r|k, l⟩∗ lim
η→0

f (Ek+q,l′)− f (Ek,l)

Ek+q,l′ −Ek,l − h̄ω − ih̄η
, (2.14)

connecting δN, the induced density, to V (q, t), the total selfconsistent perturbing potential energy.

What we apply to the system is the external potential Φext(r, t); however, Eq. (2.14) is given
in terms of Φ(r, t), the total potential, which also includes the screening potential Φind(r, t).
Rewriting Eq. (2.11) yields

Φ(q, t) =
Φind(q, t)
1− ε̂(q, t)

.

Our task now is to establish a relationship between the induced potential and the changes in
the electronic density. The energy Vind(r, t) = −eΦind(r, t) of the induced screening potential is
related by Poisson’s equation:

∇
2Vind(r, t) =−4πe2⟨δN(r, t)⟩.

The electronic charge density ρ can be written in terms of the particle density operator N as

⟨ρ⟩=−e⟨N⟩=−eTr{Nδ (r− r0)},

where Tr indicates the trace. Using the identity ∑k,l |k, l⟩⟨k, l|= 1 we obtain

⟨δN⟩= Tr{δNδ{r = r0}}
= ∑

k,q
∑
l,l′
⟨k+q, l′|δN|k, l⟩⟨k, l|δ{r− r0}|k+q, l′⟩, (2.15)

where r0 indicates the electron positions and l, l′ are the band indices. Now we replace the states
in the second matrix element with Bloch functions and use δ{r− r0} to perform the integration
over r. Replacing r0 by r, this yields

⟨δN⟩= Ω
−1

∑
k,q

∑
l,l′

u∗k,luk+q,l′e
iq·r⟨k+q, l′|δN|k, l⟩.

Putting this expression for the change in particle density into the Poisson equation gives the
response to the change in the potential

∇
2Vind(r, t) =−4πe2

Ω
∑
k,q

∑
l,l′

u∗k,luk+q,l′e
iq·r⟨k+q, l′|δN|k, l⟩;
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and taking the Fourier transform of ∇2Vind(r, t) leads to

−(q′)2V (q′, t) =−4πe2

Ω
∑
k,q

∑
l,l′
⟨k+q, l′|δN|k, l⟩

∫
dru∗k,luk+q,l′e

i(q−q′·r). (2.16)

We can utilize the periodicity of the function u(r) in the same way as before, and hence convert
the integral over the entire system to one over a single unit cell and a sum over the unit cells.
Following the same procedure as we employed in deriving Eqs. (2.7)-(2.10), we arrive at the
following expression for the induced potential energy:

Vind(q, t) =
4πe2

q2Ω
∑
k

∑
l,l′
⟨k+q, l′|δN|k, l⟩⟨k, l|e−iq·r|k+q, l′⟩∗, (2.17)

where we have used the definition in Eq. (2.9). Substituting Eq. (2.14) into Eq. (2.17) gives a
relationship between the induced energy and the total potential energy as

Vind(q, t) = lim
η→0

4πe2

q2Ω
∑
k

∑
l,l′

V (q, t)
f (Ek+q,l′)− f (Ek,l)

Ek+q,l′ −Ek,l − h̄ω − ih̄η
|⟨k+q, l′|e−iq·r|k, l⟩∗|2. (2.18)

Rearranging Eq. (2.11), we have

ε̂(q, t) = 1− Φind(q, t)
Φ(q, t)

= 1− Vind(q, t)
V (q, t)

;

and the previous two expressions allow us to write the Fourier component of the dielectric con-
stant in terms of Bloch functions as follows:

ε̂(q,ω) = 1− lim
η→0

4πe2

q2Ω
∑
k

∑
l,l′

f (Ek+q,l′)− f (Ek,l)

Ek+q,l′ −Ek,l − h̄ω − ih̄η
|⟨k+q, l′|e−iq·r|k, l⟩∗|2, (2.19)

an expression usually referred to as the Lindhard form for the RPA dielectric function; ε̂(q,ω)
refers to the longitudinal dielectric constant, the component related to the scalar potential. With
the general relation (also called the Dirac identity):

lim
η→0

1
x± iη

= P
{

1
x

}
∓ iπδ (x),

we now can obtain the complex RPA dielectric function as ε̂(q,ω) = εRe(q,ω) + iεIm(q,ω),
where the real part has the form as

εRe(q,ω) = 1− 4πe2

q2Ω
∑
k

∑
l,l′

f (Ek+q,l′)− f (Ek,l)

Ek+q,l′ −Ek,l − h̄ω
|⟨k+q, l′|e−iq·r|k, l⟩∗|2, (2.20)

and the imaginary part has the form as

εIm(q,ω) =
4πe2

q2Ω
∑
k

∑
l,l′
[ f (Ek+q,l′)− f (Ek,l)]|⟨k+q, l′|e−iq·r|k, l⟩∗|2. (2.21)

These expressions for the real and imaginary parts of the dielectric constant include both transi-
tions between bands corresponding to different l and l′ indices and also transitions between states
within one band.
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Next, substituting the eigenenergy and eigenfunction of a 3D electronic system, we can obtain
the plasmon dispersion relation by solving the condition where the real part of the dielectric
function equals zero, i.e., εRe(q,ω) = 0. Additionally, the energy loss spectrum of a 3D electronic
system can be calculated using the definition of the energy loss function:

Eloss =−Im
[

1
ε̂(q,ω)

]
=

−εIm(q,ω)

εRe(q,ω)2 − εIm(q,ω)2 . (2.22)

2.2 The Boltzmann equation and balance equation theories

In condensed matter physics, the Boltzmann equation is an efficient method for studying scat-
tering problems. In transport issues such as impurity scattering, the Boltzmann equation has the
following advantages: first, the derivations that start from the Boltzmann equation easily yield
accurate results; second, the first theoretical explanation of resistivity originates from the Boltz-
mann equation; third, the derivations from the Boltzmann equation provide formulas that are easy
to understand and recognize; and finally, when scattering is strong, the results from the Boltz-
mann equation align better with experimental results [208]. Our research group has successfully
studied the optoelectronic, magneto-optical, phonon scattering, and impurity scattering properties
of 2D Dirac materials such as graphene using the Boltzmann equation theory and related balance
equation methods [208, 209], as well as the optoelectronic and transport properties of 2D black
phosphorus, 2D semi-Dirac systems, and type-I 3D DSM Na3Bi [87, 212–214], demonstrating
the powerful role of the Boltzmann equation in scattering research.

Consider a 3D electronic system, where the one-electron motion is described by the Hamilto-
nian HK, the eigenstate is |K, l⟩, and the eigenenergy is EK,l . Here, K = (kx,ky,kz) represents the
electron wave vector, and l = +1 and l = −1 correspond to the conduction and valence bands,
respectively. In the following derivations, for clarity, we redefine the notations: |K, l⟩ ≡ |ζ ⟩ and
EK,l ≡ Eζ . Then, based on the carrier-photon scattering due to the interaction between the system
and linearly polarized light, as well as the carrier-impurity scattering at low temperatures due to
internal impurities, we will introduce the relevant theories of the momentum balance equation
and energy balance equation starting from the Boltzmann equation. Furthermore, methods for
calculating the optical conductivity (OC) and lifetime of a 3D electronic system will be provided
as well.

2.2.1 Carrier-photon scattering rate

Considering the interaction between the bulk sample of a 3D electronic system and a weak
linearly polarized light, the carrier-photon (c-p) scattering process can be treated as a perturbation
of the system. Linearly polarized light is a transverse plane electromagnetic wave, and assuming
its frequency and electric field strength are ω and F0, respectively, its vector potential can be
expressed as A(t) = (F0/ω)sin(ωt). From the perturbation, the wave vector of the system can
be modified as K → K− eA(t)/h̄. Therefore, under the Coulomb gauge, the Hamiltonian of the
system in the presence of an external light can be written as H[K− eA(t)/h̄]. Thus, the carrier-
photon interaction Hamiltonian is given by

Hc−p(t)≃ H[K− eA(t)/h̄]−HK. (2.23)
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For the case of the weak light, Hc−p(t) can be written as Hc−p(t) = Hc−p(eiωt + e−iωt), where
Hc−p is the time-independent coefficient of Hc−p(t) after neglecting the higher-order terms of
F0. Assuming that the system has an anisotropic band structure, the Hamiltonian for the c-p
interaction, when linearly polarized light acts perpendicular or parallel to the sample, will also
be anisotropic. Hence, we express it as H j

c−p, where j = x, y, or z. Under the condition that the
external light is periodic, with a sufficiently long irradiation time and different light polarization
directions, the first-order steady-state transition rate for a carrier scttered from an initial state |ζ ⟩
to a final state |ζ ′⟩ through the c-p interaction can be obtained using Fermi’s Golden Rule as

W j,c−p
ζ ζ ′ =

2π

h̄
|⟨ζ ′|H j

c−p|ζ ⟩|2δ (Eζ ′ −Eζ − h̄ω), (2.24)

Here, energy conservation δ (Eζ ′ −Eζ − h̄ω) indicates the process in which the carrier transitions
from an initial state to a final state by absorbing a photon with energy h̄ω . In the presence of an
external light field, we can mainly focus on the photon absorption process.

2.2.2 Carrier-impurity scattering rate

Consider a uniform high-quality bulk sample of a 3D electronic system, where impurities are
randomly distributed. The electron states are plane waves, and the electrons scatter with isolated
impurities. If the impurities are sufficiently dilute, interference between successive scattering
events can be neglected. The carrier-impurity (c-i) interaction involves carriers being affected
by the weak 3D Coulomb potential of charged impurities. Thus, the c-i interaction Hamiltonian,
which includes the screening length of electron-electron (e-e) interaction, is given by

Hc−i =
e2

κ|R−Ri|
e−KsR (2.25)

Here, R = (x,y,z) is the coordinates of a carrier, while the charged impurity is located at Ri =
(xi,yi,zi); κ is the static dielectric constant of the material; Ks is the inverse of the e-e interaction
screening length, which can be obtained from the real part of the RPA dielectric function in Eq.
(2.20): considering the low-temperature limit (T → 0), the long-wavelength limit (Q → 0), and
the static case (ω = 0), the relationship between the screening length 1/Ks and the real part of
the dielectric function in 3D is given by εRe(Q,0) = 1+K2

s (Q)/Q2. Then, assuming that the
electron state |ζ ⟩ and the impurity state |I⟩ can be described separately, i.e., |ζ ; I⟩ = |ζ ⟩|I⟩, we
can also apply Fermi’s Golden Rule to obtain the first-order steady-state transition rate for the
carrier scattered from the initial state |ζ ; I⟩ to the final state |ζ ′; I⟩ via c-i interaction, which reads
as

W c−i
ζ ζ ′ =

2π

h̄
|⟨I;ζ

′|Hc−i|ζ ; I⟩|2δ (Eζ ′ −Eζ )

=
2π

h̄
Ni|⟨ζ ′|Hc−i|ζ ⟩|2δ (Eζ ′ −Eζ ), (2.26)

Here, Ni = |⟨I|I⟩|2 represents the impurity concentration, and the energy conservation δ (Eζ ′−Eζ )
indicates that the impurity scattering described above does not involve any energy transfer.

2.2.3 Boltzmann equation theory

After obtaining the scattering rates for the carrier-photon and carrier-impurity interactions in a
3D electronic system, we can study its physical properties such as optical conductivity and life-
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time using the Boltzmann equation and the related theoretical approaches. Now, let us start with
the Boltzmann equation. In Boltzmann theory, carriers can be described by the classical distribu-
tion function f (R,K, t), and the time rate of change of this distribution function is governed by
the Boltzmann equation [208]:

0 =
d f
dt

=
∂ f
∂ t

+v ·∇R f +
∂K
∂ t

·∇K f +
(

∂ f
∂ t

)
coll

, (2.27)

The last term is the time rate of change due to collisions with the photons or impurities. There is
no R dependence in f (R,K, t) since the material is assumed to be homogeneous. Also, for the dc
conductivity, there is no time dependence. The system has a weak external electric field, and the
current flows in a steady-state fashion. The distribution function is only a function of wave vector
f (K) and obeys the equation

0 =
∂K
∂ t

·∇K f +
(

∂ f
∂ t

)
coll

. (2.28)

In a solid, the factor ∂K/∂ t is equivalent to an acceleration equal to the external forces on the
carrier [208, 209]: ∂K/∂ t = eF/h̄− ev×H0/c. In the present problem, there is an electric field
F and no magnetic field (H0 = 0), so that we can express the steady-state Boltzmann equation for
the 3D electronic system as(

∂ f
∂ t

)
coll

=−eF
h̄

·∇K fζ = g∑
ζ ′
[ fζ ′(1− fζ )Wζ ζ ′ − fζ (1− fζ ′)Wζ ′ζ ]. (2.29)

In the above equation, g represents the degeneracy of the system, fζ = fl(K) represents the
momentum distribution function of carriers in the initial state |ζ ⟩, and Wζ ζ ′ is the steady-state
transition rate for carriers scattering from the initial state to the final state during the scattering
process. Assuming that the 3D electronic system has an anisotropic band structure, Eq. (2.29)
can be further expressed as

−
eFj

h̄
∂ fζ

∂k j
= g∑

ζ ′
[ fζ ′(1− fζ )W

j
ζ ζ ′ − fζ (1− fζ ′)W j

ζ ′ζ ], (2.30)

with j = x, y, or z.

By substituting Eqs. (2.24) or (2.26) into Eq. (2.30) along with the eigenenergy and eigenstate,
we can investigate the scattering processes of carriers with photons or impurities in a 3D electronic
system. However, after incorporating the relevant expressions, it becomes challenging to obtain
an analytical solution for Eq. (2.30) or to perform straightforward calculations. At this point,
by using the balance equation theory derived from the Boltzmann equation, we can circumvent
the difficulties of directly solving the Boltzmann equation while retaining the advantages of the
effective response of carriers to different external fields present in the Boltzmann equation. Next,
we will introduce the energy balance equation and momentum balance equation derived from
the Boltzmann equation, as well as the methods for studying the optoelectronic properties and
transport properties of electronic systems.

2.2.4 Energy balance equation and optical conductivity

The energy balance equation can be obtained by multiplying g∑ζ Eζ on both sides of Eq.
(2.30). Since the perturbation Hamiltonian for the carrier-photon interaction is Hermitian, that is,
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⟨ζ ′|H j
c−p|ζ ⟩= ⟨ζ |H j

c−p|ζ ′⟩∗ in Eq. (2.24), the c-p scattering rate has symmetry W j,c−p
ζ ζ ′ =W j,c−p

ζ ′ζ .
Thus, we can iterate Eq. (2.30) into

−
eFj

h̄
g∑

ζ

Eζ

∂ fζ

∂k j
= g2

∑
ζ ,ζ ′

(Eζ ′ −Eζ ) fζ (1− fζ ′)W j,c−p
ζ ζ ′ . (2.31)

On the left-hand side of the above equation, under the condition of carrier number conservation,
we have

g∑
ζ

Eζ

∂ fζ

∂k j
=−h̄N0v∗j ,

where v∗j is the average drift velocity of the carriers caused by Fj, and N0 is the total carrier density
in the system. In Eq. (2.24), the energy conservation for the carrier-photon scattering indicates
that Eζ ′ −Eζ = h̄ω . Thus, we can obtain the energy balance equation corresponding to different
light polarization directions as

eFjN0v∗j = g2h̄ω ∑
ζ ,ζ ′

fζ (1− fζ ′)W j,c−p
ζ ζ ′ . (2.32)

In steady state, the current density J induced by the external field F is defined as J = eN0v∗ [209],
and its relationship with the conductivity σ induced by the external field is given by J = σF
[209]. If we only change the polarization direction of light, then we have Fx = Fy = Fz = F0;
further assuming that the momentum distribution of carriers in Eq. (2.32) can be described by
a statistical energy distribution such as the Fermi-Dirac function, fζ = fl(K) = fl(EK,l), where
f+(EK,+) = [e(EK,+−Ee

F )/kBT + 1]−1 represents the electron distribution in the conduction band
with the Fermi level of Ee

F , and f−(EK,−) = [e(EK,−−Eh
F )/kBT +1]−1 represents the hole distribution

in the valence band with the Fermi level of Eh
F ; thus, we can obtain the longitudinal optical

conductivity induced by different transition channels of carriers under different light polarization
directions, which reads as

σ
ll′
j j (ω) = g2 h̄ω

F2
0

∑
K,K′

fl(EK,l)[1− fl′(EK′,l′)]W
j,c−p

ζ ζ ′ . (2.33)

Because the optical conductivity of the system in an applied light field mainly comes from the
case where its carriers absorb photon energy, the situation where electrons lose energy can be
ignored, i.e., σ

+−
j j (ω)≈ 0. Therefore, the total optical conductivity of the system can be written

as

σ j j(ω) = ∑
l,l′

σ
ll′
j j (ω) = σ

++
j j (ω)+σ

−−
j j (ω)+σ

−+
j j (ω), (2.34)

In this equation, ++ and −− represent the optical conductivity caused by transitions within the
conduction band and the valence band, respectively, while −+ represents the optical conductivity
caused by the transition channel where electrons are excited from the valence band to the conduc-
tion band through photon absorption. Now, we can calculate the optical conductivity in different
directions of a 3D electronic system using Eqs. (2.33) and (2.34).

2.2.5 Momentum balance equation and momentum lifetime

In Eq. (2.26), the Hamiltonian for the carrier-impurity interaction also has Hermitian ⟨ζ ′|Hc−i|ζ ⟩=
⟨ζ |Hc−i|ζ ′⟩∗, and W c−i

ζ ζ ′ also exhibits symmetry W c−i
ζ ζ ′ = W c−i

ζ ′ζ . Therefore, the equation corre-
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sponding to impurity scattering, Eq. (2.30), can be simplified to

−
eFj

h̄
∂ fζ

∂k j
= g∑

ζ ′
( fζW c−i

ζ ζ ′ − f ′
ζ
W c−i

ζ ′ζ ). (2.35)

The momentum balance equation for carrier-impurity scattering can be obtained by multiplying
g∑ζ k j on both sides of the above equation, which reads as

−
eFj

h̄
g∑

ζ

k j
∂ fζ

∂k j
= g2

∑
ζ ,ζ ′

(k′j − k j) fζW c−i
ζ ζ ′ . (2.36)

On the left-hand side there is

g∑
ζ

fζ = Ne +Nh = N0, g∑
ζ

k j
∂ fζ

∂k j
=−N0,

where Ne, Nh, and N0 represent the electron density, hole density, and total conducting carrier
density of the system, respectively. Thus, Eq. (2.36) can be further expressed as

eFj

h̄
N0 = g2

∑
ζ ,ζ ′

(k′j − k j) fζW c−i
ζ ζ ′ . (2.37)

Then, we consider that the electric field Fj caused by the charged impurities induces a drift in the
carrier momentum. Assuming that the momentum distribution of the carriers can be described by
the Fermi-Dirac distribution function, we have fζ = fl [El(K−m∗v∗/h̄)], where v∗ is the average
drift velocity of the carriers. The average drift velocity of carriers in each direction, v∗j , is induced
by the electric field Fj of the charged impurities, while m∗

j is the effective mass of the electrons
in the j direction. Condition m∗

jv
∗
j ≪ k j is satisfied since Fj is sufficiently weak, so that we can

apply a first-order Taylor expansion and obtain

fζ ≃ fl(Eζ )−
m∗

jv
∗
j

h̄
∂Eζ

∂k j

∂ fl(Eζ )

∂Eζ

. (2.38)

Substituting the above expression into Eq. (2.37), ∑ζ ,ζ ′(k′j − k j) fl(Eζ )W
c−i
ζ ζ ′ = 0 can be found

through the symmetry of Wζ ζ ′ . Thus, Eq. (2.37) can be further simplified to

eFjN0 =−g2
∑
ζ ,ζ ′

(k′j − k j)W c−i
ζ ζ ′ m∗

jv
∗
j
∂Eζ

∂k j

∂ fl(Eζ )

∂Eζ

. (2.39)

By using the definition of carrier mobility [209]: µ j =−v∗j/Fj = eτ j/m∗
j , and combining it with

Eq. (2.39), we can derive the expression for the momentum lifetime of carriers in a 3D electronic
system, which reads

1
τ l

j
=

g2

N0
∑
ζ ,ζ ′

(k′j − k j)W c−i
ζ ζ ′

∂Eζ

∂k j

∂ fl(Eζ )

∂Eζ

. (2.40)

It is important to note that the carrier-impurity scattering is sufficiently weak. The energy con-
servation in W c−i

ζ ζ ′ indicates that impurity scattering is not strong enough to induce interband tran-
sitions; therefore, the momentum lifetime is primarily contributed by the intraband transitions of
the carriers. Now, by using Eqs. (2.26) and (2.40), we can calculate the momentum lifetime for a
3D electronic system.
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conductivity of type-I 3D DSMs

Monolayer graphene is a typical 2D Dirac system, characterized by its gapless linear energy
dispersion and masslessness at the Dirac point. Research on graphene has revealed many op-
toelectronic properties of 2D Dirac systems, such as the optical absorption window in the mid-
infrared range and the universal optical conductance in the visible range [215, 216], the varying
optical transmittance under different layers [217], tunable optical conductance and optical ab-
sorption windows [216, 218], among others.

Figure 3.1: Gate-voltage tunable optoelectronic properties of monolayer graphene. (a) Trans-
mission and (b) reflection are gate-tunable in monlayer graphene. (c) The Fermi energy EF
and the Fermi wave vector kF change linearly with the square root of the gate voltage

√
V

(EF ∝ kF ∝
√

V ). (d) Gate-voltage can modulate the optical conductance of monolayer graphene.
A universal conductance of e2/4h̄ in the high-frequency range can be observed, and a gate-tunable
optical absorption window in the mid-infrared to terahertz spectrum can be found. Adapted from
Ref. [220].
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As shown in Figs. 3.1(a) and 3.1(b), the reflection and transmission that are tunable through
gate-voltage were observed in monolayer graphene. Based on the linear energy dispersion, the
relationships can be derived from the electron density N and the Fermi velocity vF , which reads
EF = h̄vF

√
πN, N = CgV/e (where Cg = 115 aFµm−2 is the gate capacitance per unit area),

kF =
√

πN =
√

πCgV/e [215], as shown in Fig. 3.1(c). These relationships indicate that the
applied gate-voltage can tune the electron density in graphene, thereby changing its Fermi level
and tuning the relevant optoelectronic properties. From Fig. 3.1(d), we can see that its optical
conductance, derived from Figs. 3.1(a) and 3.1(b), exhibits a universal conductance of e2/4h̄ in
the high photon energy range (ω > 5000 cm−1), which is independent of N and the gate-voltage.
In the mid-infrared to terahertz range, since optical absorption is proportional to optical con-
ductance, an optical absorption window tuned by the gate-voltage can be observed [215]. Fig.
3.1(d) has an explanation that the optical absorption window in graphene arises from the differing
energy requirements for intraband and interband electronic transitions within its gapless linear
band structure. As the gate-voltage increases, the electron density is also higher, resulting in a
higher Fermi level. Consequently, the photon energy required for the intraband and interband
transitions increases, leading to a systematic blueshift in the optical conductance as the electron
density increases [219, 220]. These results indicate that the optoelectronic properties of mono-
layer graphene at specific frequencies can be switched on and off by varying the electron density,
showcasing the potential of 2D Dirac systems for optimization and development in optoelectronic
devices such as optical modulators.

As analogs of graphene, type-I 3D DSMs also have massless, gapless, and linear energy disper-
sion near the Dirac point. As shown in Figs. 3.2(a) and 3.2(b), the optical conductivity (OC) of
the bulk Cd3As2 has been found to be isotropic in the x-y plane and to feature an optical absorp-
tion window [133], similar to monolayer graphene. Additionally, its OC is nearly temperature
independent at higher photon energies [133], which requires further explanation. In Fig. 3.2(c),
the authors obtained the in-plane OC of Cd3As2 by fitting it with a simple 3D Dirac cone model,
revealing that OC at higher photon energies is primarily contributed by interband transitions of
electrons [133]. However, this theoretical result does not explain the physical mechanism of
OC at lower photon energies, thus failing to account for the optical absorption window. Simi-
lar temperature-dependent reflection experiments have also been reported in Na3Bi [202]. The
subsequently discovered anisotropic OC in bulk Cd3As2 demonstrates the differences between
type-I DSMs and graphene [134], but this result lacks explanations. Furthermore, as shown in

Figure 3.2: Experimental research on the optoelectronic properties of bulk Cd3As2. (a) The reflec-
tivity of bulk Cd3As2 in the x-y plane varies with photon energy and is influenced by temperature.
(b) The in-plane OC of bulk Cd3As2, derived from (a), changes with photon energy, showing the
presence of an absorption window. (c) The yellow curve represents the theoretical result of the
interband OC obtained by fitting with a simple 3D Dirac cone. Adapted from Ref. [133].
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Fig. 1.7(b), it has been reported that the electron density in 3D DSMs can be tuned by an external
gate-voltage [90]. Therefore, in these materials, the tunability of OC with gate-voltage, similar to
that of graphene, is also worth further exploration. The many interesting physical phenomena dis-
covered in the optical experiments of type-I DSMs, along with the unexplained aspects, prompt
us to conduct in-depth theoretical research on the OC of type-I DSMs.

From the similarities between type-I 3D DSMs and graphene, we have reason to believe that
their optoelectronic properties, such as the OC, have some common features, stemming from
gapless Dirac fermions. However, type-I DSMs possess nontrivial topological features, indicating
that their optoelectronic properties should have more differences that must be explained based
on their nontrivial band structure. Along the kz direction of type-I DSMs, band inversion can
be found between a pair of Dirac points, which corresponds to the Berry curvature region that
obviously affects the electron momentum. To theoretically study the optoelectronic properties
of type-I DSMs, it is essential to have a clear understanding of the energy band characteristics
of these materials. Therefore, in this chapter, we begin with a detailed analysis of the band
structure of type-I DSMs. Theoretically, the anisotropy and Berry curvature in Na3Bi are stronger
than those in Cd3As2. Thus, we will then conduct investigations of OC in type-I DSMs based
on Na3Bi. An in-depth analysis of the OC of type-I 3D DSMs not only provides reasonable
explanations for experimental results but also reveals how their OC is influenced by topological
properties.

3.1 Spin degenerate energy band of type-I 3D DSMs

Under the k ·p theory, the effective Hamiltonian for the low-energy excitations of 3D DSMs is
given by Eq. (1.3) [53, 54]:

H(K) = εK × I +


MK Ak+ Dk− B∗

K
Ak− −MK B∗

K 0
Dk+ BK MK −Ak−
BK 0 −Ak+ −MK

 ,

where K = (kx,ky,kz) is the 3D wave vector, and I is the 4× 4 identity matrix; the lattices of
Na3Bi and Cd3As2 are periodic stacking structures of the basic atomic layers [53, 54], with the kz
direction corresponding to the stacking direction; k± = kx± iky, εK =C0+C1k2

z +C2k2, and MK =
M0 −M1k2

z −M2k2; C0, C1, C2, M0, M1, M2, and A are the band parameters; BK = B3kzk2
+ ∼ K3

is a higher-order term contributing to electron motion, which only has a significant effect when
the electron momentum is very large; the terms containing D describe the breaking of crystal
symmetries, with D = 0 when maintaining crystal symmetries. The analytical solution for the

energy dispersion is given by E±(K) = εK ±
√

M2
K +A2k2 + |BK|2, where + and − correspond

to the conduction band and the valence band, respectively, and the two Dirac points are located at
k = 0 and kz =±kc

z =±[M0/M1]
1/2.

Angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES measurements
indicate that the band structures of Na3Bi and Cd3As2 maintain spin degeneracy over a range of
lower energies and small momenta [55–58], and that band splitting can only be observed under
very strong magnetic fields [82, 109, 114]. These results are consistent with theoretical findings,
where the BK term is approximately 0 under a lower energy and small momentum, and the band
structure of type-I DSMs maintains spin degeneracy and has strong robustness near the Dirac
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points [53, 54]. In this study, weak external fields only affect the carriers at lower energies and
smaller momenta, thereby we can neglect the BK term in the Hamiltonian; at the same time,
weak external fields do not break the crystal symmetries, so there is D = 0. Thus, the effective
Hamiltonian of type-I 3D DSMs can be simplified as

H(K) =

(
Hu(K) 0

0 Hl(K)

)
,

where Hu(K) and Hl(K) are two 2× 2 matrices. Crystal symmetries indicate that Hl(K) is the
time-reversal of Hu(K), that is, Hl(K) = H∗

u (−K), which allows us to focus on Hu(K) for further
study.

After considering the crystal symmetries and spin degeneracy, we obtain the simplified Hamil-
tonian for type-I 3D DSMs as

Hu(K) =

(
εK +MK Ak+

Ak− εK −MK

)
. (3.1)

The corresponding eigenvalue and eigenfunction are, respectively,

EK,l = εK + l
[
M2

K +A2k2]1/2
= εK + l

[
ξK,l +MK

]
, (3.2)

and

ψK,l(R) = |K, l⟩= aK,l

(
1

bK,l

)
eiK·R. (3.3)

Here, l =+1 (l =−1) denotes the conduction (valence) band, R=(x,y,z), ξK,l =
[
M2

K+A2k2
]1/2−

lMK,
aK,l = Ak(ξ 2

K,l +A2k2)−1/2, bK,l = lξK,l/Ak−. (3.4)

Eqs. (3.1)-(3.4) with different band parameters are suitable for studying both Na3Bi and Cd3As2.

In this study, we consider n-doped bulk Na3Bi, where the valence band is fully occupied. The
density of states (DOS) in the conduction band is given by the imaginary part of the Green’s
function, which reads as

D+(E) =−gs

π
∑
K

δ (E −EK,+), (3.5)

where gs = 2 represents spin degeneracy. By performing a Lorentzian expansion of the Dirac-
δ function, i.e., δ (x) = (Γ/π)(x2 +Γ2)−1, and substituting the broadening Γ = 1 meV, we can
obtain the DOS of type-I DSMs. The condition of carrier number conservation is defined as
Nl = gs ∑K fl [El(K)], where Nl represents the density of electrons or holes, and fl [El(K)] is the
Fermi-Dirac function for electrons or holes. Using this condition, we can find the relationship
between the electron density Ne and the Fermi energy Ee

F in the conduction band as

Ne =
1

π2

∫
∞

0
dkz

∫
∞

0
dk

k

e(EK,+−Ee
F )/kBT +1

. (3.6)

For an n-doped Dirac system under an external field, electrons in the valence band can easily
transition to the conduction band after absorbing photons because of the gapless nature, leaving
behind holes in the valence band. If N is the electron density without an external field, then the
electron density in the presence of a field is given by Ne = N +∆Ne, where ∆Ne is the photon-
excited electron density. Meanwhile, the carrier number conservation gives ∆Ne = Nh, where
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Nh is the hole density. Therefore, the corresponding hole Fermi energy Eh
F related to Nh can be

expressed as

Nh =
1

π2

∫
∞

0
dkz

∫
∞

0
dkk

[
1− 1

e(EK,−−Eh
F )/kBT +1

]
. (3.7)

3.2 Optical conductivities of type-I 3D DSMs in different light
polarization directions

Bulk Na3Bi is isotropic in the x-y plane. Therefore, we consider the case where linearly polar-
ized light is incident perpendicular to its x-y plane, with light polarization along the x direction.
At the same time, we also consider the case where linearly polarized light is incident parallel to
its x-y plane, with the light polarization along the z direction, to study its anisotropic OCs.

Introducing Eq. (3.1) into Eq. (2.23), we can obtain the perturbation Hamiltonian for the
carrier-photon (c-p) interaction in a type-I DSM when the light polarization is along the x and z
directions, respectively, as

Hx
c−p(t) =

2eA(t)
h̄

(
(M2 −C2)kx −A/2

−A/2 −(M2 +C2)kx

)
, (3.8)

and

Hz
c−p(t) =

2eA(t)kz

h̄

(
(M1 −C1) 0

0 −(M1 +C1)

)
. (3.9)

Here, A(t) = (F0/ω)sin(ωt) is the vector potential of the light field, where F0 is its electric field
strength and ω its frequency. Since we only change the polarization direction of the light, we have
F0 = Fx = Fz. Considering the light field as a weak radiation field, we neglect the higher-order
terms F2

0 in the perturbation Hamiltonian that represent strong light fields.

Substituting the time-independent coefficients Hx
c−p and Hz

c−p of the perturbation Hamiltonian
into Eq. (2.24), we can obtain the first-order transition rate for the carriers in Na3Bi, scattering
from the initial state |ζ ⟩ ≡ |K, l⟩ to the final state |ζ ′⟩ ≡ |K′, l′⟩ under different light polarization
directions as

W j,c−p
ζ ζ ′ =

2π

h̄
|⟨ζ ′|H j

c−p|ζ ⟩|2δ (Eζ ′ −Eζ − h̄ω)

=
2π

h̄

(
eF0

h̄ω

)2

|U j
ζ ζ ′ |2δK,K′δ (Eζ ′ −Eζ − h̄ω), (3.10)

where j = x or z, Eζ and Eζ ′ come from Eq. (3.2),

|U j
ζ ζ ′ |2 =

|G j
ζ ζ ′ |2

[ξ 2
ζ
+A2k2][ξ 2

ζ ′ +A2k′2]
, (3.11)

ξζ = ξK,l comes from Eq. (3.3), Gx
ζ ζ ′ = A2(lk+ξζ + l′k−ξζ ′)/2− kx[A2k2(M2 −C2)− ll′(M2 +

C2)ξζ ξζ ′ ], Gz
ζ ζ ′ = kz[A2k2(M1−C1)− ll′(M1+C1)ξζ ξζ ′ ], the momentum conservation δK,K′ and
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energy conservation δ (Eζ ′ −Eζ − h̄ω) indicate that the c-p interaction has a photon absorption
process without changing the electron momentum.

The longitudinal OC caused by the different transition channels in a 3D electronic system under
different light polarization directions is given by Eq. (2.33):

σ
ll′
j j (ω) = g2 h̄ω

F2
0

∑
K,K′

fl(EK,l)[1− fl′(EK′,l′)]W
j,c−p

ζ ζ ′ ,

where g = gs = 2 represents spin degeneracy. Substituting Eqs. (3.10) and (3.11) into this equa-
tion, momentum conservation δK,K′ implies that K = K′; considering the energy relaxation pro-
cess, where the carrier has a broadened scattering state near the Fermi level, the energy relaxation
time approximation can be applied, i.e., δ (x)≃ (Eτ/π)(x2+E2

τ )
−1 (where Eτ = h̄/τ , and τ is the

energy relaxation time of the carriers), to handle δ (Eζ ′ −Eζ − h̄ω). Thus, for the case where the
light polarization is along the x direction of the n-doped bluk Na3Bi, we can obtain the in-plane
OCs induced by intraband transitions as

σ
ll
xx(ω) =

σ0

(π h̄ω)2
ωτ

1+(ωτ)2

∫
∞

0
dkz

∫
∞

0
dkk3Gx

ll(K) fl(EK,l)[1− fl(EK,l)], (3.12)

where l = +1 denotes the conduction band, f+(EK,+) = [e(EK,+−Ee
F )/kBT +1]−1, l = −1 denotes

the valence band, f−(EK,−) = [e(EK,−−Eh
F )/kBT +1]−1, σ0 = e2/h̄ is the quantum conductance, and

Gx
ll(K) =

[A2[k2(M2 −C2)− lξK,l ]− (M2 +C2)ξ
2
K,l

ξ 2
K,l +A2k2

]2

.

Since we only consider the photon absorption, there is σ+−
xx (ω)≃ 0, and we can obtain the intra-

band transition induced in-plane OC as

σ
−+
xx (ω) =

σ0A2ωτ

(π h̄ω)2

∫
∞

0
dkz

∫
∞

0
dkkGx

−+(K)
f−(EK,−)[1− f+(EK,+)]

1+ τ2(ω −2
√

M2
K +A2k2/h̄)2

, (3.13)

with

Gx
−+(K) = 1+

(2M2k2 +MK)
2

M2
K +A2k2 .

For the case where the light polarization is along the z direction, the out-of-plane OCs induced
by intraband transitions read as

σ
ll
zz(ω) =

2σ0

(π h̄ω)2
ωτ

1+(ωτ)2

∫
∞

0
dkz

∫
∞

0
dkkk2

z Gz
ll(K) fl(EK,l)[1− fl(EK,l)], (3.14)

with

Gz
ll =

[
A2k2(M1 −C1)− (M1 +C1)ξK,l

ξ 2
K,l +A2k2

]2

.

For interband OC in the z direction, we also have σ+−
zz (ω)≃ 0 and

σ
−+
zz (ω) =

2σ0ωτ

(π h̄ω)2

∫
∞

0
dkz

∫
∞

0
dk

A2M2
1 k3k2

z

M2
K +A2k2

f−(EK,−)[1− f+(EK,+)]

1+ τ2(ω −2
√

M2
K +A2k2/h̄)2

. (3.15)
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Using the above equations, we can calculate the OCs of the n-doped bulk Na3Bi corresponding
to different light polarization directions and different carrier transition channels. Additionally, the
Hamiltonian for Na3Bi and Cd3As2 is the same, differing only in band parameters. Therefore, by
replacing the band parameters of Cd3As2 into the above equations, we can also calculate the OCs
of Cd3As2.

3.3 Result and discussion

3.3.1 Energy band characteristics of type-I 3D DSMs

In the numerical calculations, the band parameters of Na3Bi and Cd3As2 are listed in Tab. 3.1.
The band parameters of Na3Bi are obtained by fitting first-principles calculations using Eq. (1.3)
[53]. ARPES experiments show that the theoretical results are in line with the experiments [55,
56], so we directly use the theoretical parameters in the following calculations. For Cd3As2,
ARPES experiments [57–59] and transport experiments [60, 82] indicate that the experimental
band structure is basically consistent with theoretical predictions [54], but there are some dif-
ferences, the one being that the experimental Fermi velocity is much higher than the theoretical
predictions [57, 58, 82]. Therefore, the band parameters for Cd3As2 used in this work are ob-
tained by fitting the ARPES measurements [82].

To facilitate understanding of the topological properties of type-I 3D DSMs, we first introduce
the Berry curvature described in Sec. 1.1.2. In WSMs, the Berry curvature can be treated as a
”pseudo-magnetic field” in momentum space, and the Weyl points serve as its source or magnetic
monopoles [47, 48]. In type-I DSMs, each Dirac point can be regarded as an overlap of a pair
of Weyl points with opposite chirality [53, 54]. Therefore, a Berry curvature also exists between
the two Dirac points (or magnetic monopoles). As shown in Fig. 3.3(a), the band inversion
between the two Dirac points of a type-I DSM can be found. The Berry curvature in a topological
material is determined by its band structure [221], and therefore, the determined Berry curvature
shown in Fig. 3.3(b) demonstrates the unique changes of electron momentum in type-I DSMs
[91]. It can be seen that the changes in electron momentum resemble the effect of a magnetic
field, although no external magnetic field is present. This indicates that this phenomenon arises
from the intrinsic properties, i.e., the topological natures. From the band characteristic and the
Berry curvature of type-I DSMs, we can gain a deeper understanding in future studies of how
their topological properties affect their physical phenomenon, such as OCs and plasmons.

Table 3.1: Na3Bi band parameters are taken from Ref. [53]. Cd3As2 band parameters are taken
from Ref. [82], the original parameters are M′

0 = −0.060 eV, M′
1 = 96 eVÅ2, and M3 = 0.05

eV, but in small momenta (|kz| ≪ M3/
√

M′
1), the energy band structure of Cd3As2 yields the

same as Na3Bi, thus its band parameters in Eqs. (3.1) become [82]: M0 = M′
0 + |M3| and M1 =

0.5M′
1/|M3|.

Band parameters of Na3Bi and Cd3As2
C0 (eV) C1

(eVÅ2)
C2

(eVÅ2)
M0 (eV) M1

(eVÅ2)
M2

(eVÅ2)
A

(eVÅ)
Na3Bi −0.06382 8.7536 −8.4008 −0.08686 −10.6424 −10.361 2.4598
Cd3As2 −0.219 −30 −16 −0.01 960 18 2.75



42
CHAPTER 3. ENERGY BAND CHARACTERISTICS AND OPTICAL CONDUCTIVITY OF

TYPE-I 3D DSMS

Figure 3.3: (a) Nontrivial band structure and (b) Berry curvature vector diagram of electron mo-
mentum for type-I 3D DSMs. The Dirac points correspond to magnetic monopoles in momentum
space. The arrows represent the flux of Berry curvature flowing from one magnetic monopole
(red) to another (blue), illustrating the nontrivial topological properties. The figure is adapted
from Ref. [91].

Now, using the parameters in Tab. 3.1, we get the band structure of type-I 3D DSMs. Figs.
3.4(a) and 3.4(d), respectively, show the 3D band structures of Na3Bi and Cd3As2. Figs. 3.4(b)
and 3.4(c) show the EK-k relation at kz = kc and the EK-kz relation at k = 0 for Na3Bi, while Figs.
3.4(e) and 3.4(f) present the EK,l-k relation at kz = kc and the EK-kz relation at k = 0 for Cd3As2.
The characteristics of the band structures of Na3Bi and Cd3As2 in Fig. 3.4 are summarized below.

(i) Both Na3Bi and Cd3As2 have a pair of symmetric Dirac points located at the top of the
conduction band and the bottom of the valence band, with coordinates at k = 0 and kz = ±kc,
corresponding to an energy of E0 = C0 +C1M0/M1 (Na3Bi ∼ 7.62 meV, Cd3As2 ∼ −218.68
meV).

(ii) The band structure of type-I DSMs is isotropic in the kx-ky plane but anisotropic in the k-kz
plane. The electron energy exhibits a linear dispersion near the two Dirac points, but it transitions
to a nonlinear and asymmetric dispersion away from the Dirac points.

(iii) As shown in Figs. 3.4(c) and 3.4(f), both systems exhibit an arch-like band inversion in the
conduction and valence bands along the kz direction (from −kc to kc). Fig. 3.3 indicates that the
Berry curvature in this region significantly affects the electron momentum. Unlike traditional 3D
electronic materials, where the minimum conduction band is at k = 0 and kz = 0, type-I DSMs
feature a maximum conduction band inversion and a minimum valence band inversion at k = 0
and kz = 0. The top of the conduction band inversion has an energy E1 =C0 + |M0| (Na3Bi ∼ 23
meV, Cd3As2 ∼−209 meV).

(iv) Due to the influence of the Berry curvature, the density of states D(E) in the conduction
band of Na3Bi and Cd3As2 will exhibit unique variations with the electron energy E. Taking the
conduction band inversion peak E1 as a critical point, D(E) will be significantly affected by the
Berry curvature when E < E1, leading to a different variation in the D(E)-E relation for E < E1
compared to that for E > E1. Furthermore, the effect of the Berry curvature in Na3Bi is stronger
than that in Cd3As2, resulting in a more pronounced variation in the D(E)-E relationship for
Na3Bi.
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Figure 3.4: (a) Energy dispersion EK of Na3Bi as a function of k and kz, as given by Eq. (3.2). (b)
EK as a function of k at kz = kc. The Dirac point is at k = 0 with energy E0 = 7.6 meV. (c) EK as
a function of kz at k = 0. There are two Dirac points at kz =±kc. The top of the band inversion in
the conduction band is E1 ≃ 23 meV, its bottom in the valence band at E2 ≃−151 meV, and they
are both located at k = 0 and kz = 0. (d), (e), (f): idem. as in (a), (b), and (c), respectively, for
Cd3As2. The energy of the Dirac point is at E0 ≃−218.68 meV. The top of the band inversion in
the conduction band is E1 ≃ −209 meV and its bottom in the valence band at E2 ≃ −229 meV.
The red curve shows the conduction band and the blue-dash-dotted curve is the valance band. The
green-dashed and black-dotted lines show the Fermi energy EF for high and low electron density,
respectively.

(v) Equation (3.6) defines the Fermi level of electrons Ee
F of type-I DSMs. For the n-doped

Na3Bi, the Fermi wave vector along the kz axis, kFz, is much larger than the Fermi wave vector
along the k direction, kF , with kFz being approximately 10 to 20 times larger than kF near the
Dirac point, as indicated by the black-dashed lines in Figs. 3.4(b) and 3.4(c). However, in n-
doped Cd3As2, kFz is only about two times larger than kF , as shown by the black-dashed lines in
Figs. 3.4(e) and 3.4(f). This indicates that the electronic excitations along the k and kz directions
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in Na3Bi will be significantly different, while the differences in Cd3As2 are relatively small. Thus,
the anisotropy in Na3Bi will be much more pronounced than that in Cd3As2. This conclusion has
also been reported in previous studies [53–58].

(vi) It is worth mentioning that there are differences in the band structures of Na3Bi and
Cd3As2, but the Fermi velocity of Na3Bi, vF = 2A (≃ 7.473 × 105 m/s) [108], is very close
to that of Cd3As2 (≃ 7.6×105 m/s). This is because the experimental effective mass of electrons
in Cd3As2 (∼ 0.02−0.042 me) [108] is much smaller than that of Na3Bi (∼ 0.11−0.24 me) [86].
Therefore, the mass term M0 −M1k2

z in Eq. (3.1) results in very similar Fermi velocities for these
two materials.

After a discussion of the band structure of type-I DSMs, we take Na3Bi as an example to
calculate the density of states (DOS) and Fermi levels using Eqs. (3.5)-(3.7), and further analyze
the characteristics of the energy band. Fig. 3.5(a) shows the relationship between the density
of states D(E) and the energy E for Na3Bi, and for comparison, it also shows the DOS for a
three-dimensional electron gas (3DEG) and monolayer graphene. It is well known that the DOS
for a 3DEG is given by D(E)3D =

√
2m∗3E/(π h̄2) ∝ E1/2. The significant difference between

D(E) of Na3Bi and 3DEG indicates that a type-I DSM possesses physical properties that are
distinctly different from those of 3DEG. From Figs. 3.3 and 3.4, we find that in the region of
E < E1, D(E) for Na3Bi is nearly zero when E is very small and then increases rapidly with
increasing E until E = E1. In the region where E > E1, D(E) ∝ E2 can be found for Na3Bi.
From Fig. 3.4(c), we can see that the electronic velocity ∂EK/∂kz of the type-I DSMs has a van
Hove singularity at k = kz = 0, which corresponds to E1. The unusual DOS for Na3Bi arises
from its nontrivial topological properties, such as the Berry curvature. For E < E1, the electron
momentum is strongly affected by the Berry curvature, leading to unique changes in its DOS.
Since the band structure of Na3Bi is essentially consistent with that of Cd3As2, the DOS shown
in Fig. 3.5(a) will also exist in Cd3As2, but the anisotropy of Cd3As2 is smaller than that of
Na3Bi, so the variation in the DOS for Cd3As2 will also be less than that of Na3Bi.

Figures 3.5(b) and 3.5(c) show the Fermi level of electrons and hole as functions of the carrier
density of Na3Bi at different temperatures. Combining Figs. 3.5 and 3.4, we first note that at

Figure 3.5: (a) The density of states D(E) as a function of electron energy E for Na3Bi is
shown as a blue curve, with D0 = C2

0/A3. The red dashed line marks the conduction band in-
version vertex energy E1 ≃ 23.2 meV. For comparison, the orange doted curve represents the
density of states for a 3DEG, calculated using the effective mass of Na3Bi (m∗ ≃ 0.11me) and
D0 = m∗3/2

√
2|C0|/(π h̄3); the black dashed curve indicates the density of states for monolayer

graphene, given by D0 =C2
0/(h̄vF)

3. The two arrows correspond to EF1 (green dashed line) and
EF2 (black dashed line) in Figs. 3.4(b) and 3.4(c), respectively.
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T → 0, both the Fermi level of electrons and holes in Na3Bi are located at the Dirac point under
zero carrier densities, that is, Ee

F = Eh
F = E0 ≃ 7.6 meV when Ne = Nh = 0. Therefore, the Fermi

level of Na3Bi will start at E0. In addition, Ee
F of Na3Bi increases with increasing Ne but decreases

with increasing T . In contrast, the behavior of Eh
F with respect to changes in Nh and T is opposite

to that of Ee
F , a result similar to that of 3DEG. From the DOS of Na3Bi with Fermi energy, we can

find that at low temperatures, when Ne is less than ∼ 4×1017 cm−3, Ee
F < E1 −E0, which places

Ee
F within the conduction band inversion. This indicates that the physical properties of Na3Bi

with lower electron densities will be strongly influenced by the Berry curvature, which was also
reported in our previous transport study of Na3Bi [87]. The similar band structure of Na3Bi and
Cd3As2 will endow Cd3As2 with similar properties as discussed above.

3.3.2 Anisotropic optical conductivities of type-I 3D DSMs

In this subsection, considering the band structure similarity between Na3Bi and Cd3As2 as well
as the more pronounced Berry curvature of Na3Bi, we choose Na3Bi as a representative to discuss
the optical conductivities of type-I 3D DSMs and the related properties.

Type-I 3D DSMs produced by different growth techniques or with different sample qualities
will have different carrier relaxation times [85–87], but the energy relaxation time under an ex-
ternal light field falls within approximately 1− 10 ps [136, 139, 202]. Therefore, we will study
the effect of different energy relaxation times on the OCs of Na3Bi. As mentioned in the previous
subsection, when the electronic Fermi level of Na3Bi is lower than the conduction band inver-
sion, its electronic momentum and DOS will be significantly affected by the Berry curvature.
Since temperature and carrier density will affect Fermi levels, we will also investigate the OCs of
Na3Bi at different temperatures and carrier densities.

Before performing numerical calculations, we first provide a schematic diagram of the carrier-
photon (c-p) interactions based on the band structure of the n-doped bulk Na3Bi, as shown in Fig.
3.6. From the figure, we can see that in the absence of an light field (F0 = 0), all states below
the electron Fermi level Ee

F in the conduction band are fully occupied. In the presence of a light
field (F0 ̸= 0), electrons in the valence band are excited into the conduction band through photon
absorption, while the photoexcited electrons fill the conduction band, increasing Ee

F , and holes are
generated in the valence band (with the corresponding hole density Nh and hole Fermi level Eh

F ).
Similarly to other electronic systems, photon absorption in type-I DSMs can also be achieved
through electron transitions from lower-occupied to higher-unoccupied states. Therefore, OCs
due to intraband transitions occur not only in the conduction band (σ++) but also in the valence
band (σ−−). Intraband transitions are a direct result of the broadening of electronic states near the
Fermi level and show themselves as energy relaxation processes in c-p interactions. Unlike tradi-
tional semiconductors with band gaps, because of the gapless nature of type-I DSMs, electrons in
the valence band can more easily transition to the conduction band. Thus, type-I DSMs exhibit a
strong interband OC due to interband transition channels (σ−+). This strong interband OC is also
present in other Dirac systems, such as graphene shown in Fig. 3.1 [215, 216, 219, 220].

In addition, due to the Moss-Burstein effect [222] or the Pauli blockade effect [223], which
occurs when electrons transition from lower-occupied to higher-unoccupied states, the photon
energy h̄ω required for intraband transitions is relatively small, whereas interband transitions
need a larger photon energy. In the cases of lower photon energy (in the long-wavelength region),
σ++ and σ−− will decrease as the photon energy increases. When the photon energy continues
to increase, the intraband transitions become smaller until it approaches zero, while the interband



46
CHAPTER 3. ENERGY BAND CHARACTERISTICS AND OPTICAL CONDUCTIVITY OF

TYPE-I 3D DSMS

Figure 3.6: Schematic diagram of the carrier-photon scattering channels for an n-doped bulk
Na3Bi. F0 = 0 and F0 ̸= 0 represent the cases without and with an external light field, respectively.
Ee

F and Eh
F are the Fermi levels of electrons and holes, respectively. σ++ and σ−− represent the

OCs due to electron transitions within the conduction and valence bands, while σ−+ represents
the interband OC caused by electron transitions from the valence band to the conduction band by
absorbing photon energy. (a), (b) Show cases where Ee

F is higher and lower than the conduction
band inversion, respectively. In the case of (b), the Berry curvature significantly affects the mo-
mentum of electrons, thereby affects the occupied sates and low-energy excitations near the Dirac
points. Eh

F is within the Berry curvature region in both cases.

transition increases rapidly, which is in line with the results shown in Fig. 3.2(c). At higher
photon energies, the OC is mainly contributed from the interband transitions σ−+. Therefore, our
theoretical model can explain the phenomenon observed in type-I 3D DSMs, where there is an
optical absorption window from mid-infrared to terahertz range, as shown in Fig. 3.2(b) [133,
134]. The reason is that the photon energy required for intraband and interband transitions differs
in the long-wavelength or short-wavelength regions. In addition, Figs. 3.6(a) and 3.6(b) show the
cases where Ee

F is located outside and within the band inversion, respectively. It can be seen that
when Ee

F is located within the band inversion in Fig. 3.6(b), the occupied states in the conduction
band is significantly reduced, leading to nontrivial changes in DOS of type-I DSMs as shown in
Fig. 3.5(a). This is because the electron momentum is strongly affected by the Berry curvature
where Ee

F is inside the band inversion region.

In Fig. 3.7, we show the in-plane OC σxx(ω) induced by light polarization along the x direction
and the out-of-plane OC σzz(ω) induced by light polarization along the z direction of a bulk
Na3Bi, as well as the contributions of different electron transition channels to σxx(ω) and σzz(ω).
From the figure, we notice the following features.

(i) In the short-wavelength region, σxx(ω) and σzz(ω) of Na3Bi are mainly contributed by
interband transitions, while in the long-wavelength region, intraband transitions dominate σxx(ω)
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Figure 3.7: (a), (b) Contributions of different electronic transition channels to the in-plane OC
σxx(ω) and the out-of-plane OC σzz(ω), respectively. The calculations are performed under the
conditions of temperature T = 150 K, energy relaxation time τ = 6.71 ps, electron density Ne =
2×1019 cm−3, and hole density Nh = 2×1018 cm−3. The quantum conductance is σ0 = e2/h̄ ≃
2.4341 × 10−4 Ω−1. σ++, σ−−, and σ−+ are represented by red dashed curves, blue dotted
curves, and green dotted-dashed curves, respectively.

and σzz(ω).

(ii) When λ < 2 µm, both σxx(ω) and σzz(ω) increase with increasing wavelength, leading
to observable absorption peaks. This is in contrast to the universal conductance in graphene,
σ(ω) = e2/(4h̄), as shown in Fig. 3.1 [215–220].

(iii) In the short-wavelength region, σxx(ω) is approximately five times larger than σzz(ω),
indicating that type-I DSMs exhibit anisotropic OCs and a stronger in-plane OC. The absorption
peak of σxx(ω) is also sharper than that of σzz(ω). From Figs. 3.4, 3.5, and 3.6, we find that
this is because the EK,l of Na3Bi has different dispersion relations along the k and kz directions.
The Berry curvature mainly affects the electron momentum in the kz direction, resulting in fewer
electron transition channels in the kz direction, which in turn makes σxx(ω)> σzz(ω).
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(iv) Since optical absorption is proportional to OC, both σxx(ω) and σzz(ω) of Na3Bi have
optical absorption windows in the intermediate wavelength range (∼ 2 µm < λ < ∼ 300 µm
in the x direction, and ∼ 2 µm < λ < ∼ 200 µm in the z direction). From Fig. 3.6, it can be
seen that this is due to the Pauli principle, which causes different requirements of photon energy
for intraband and interband transitions. Similar optical absorption windows can be observed in
graphene [215–218], as shown in Fig. 3.1. Experimentally, the optical absorption window of
σxx(ω) observed in type-I 3D DSM Cd3As2 is within the frequency range of approximately 200-
10000 cm−1 (corresponding to a wavelength of about 1-50 µm) [133, 134], as shown in Fig.
3.2(b), which is basically consistent with our theoretical calculations. The minor differences in
the position of the windows between Cd3As2 and Na3Bi mainly come from their different band
parameters.

(v) Figure 3.2(b) shows that, in the frequency range of about 1500-10000 cm−1 (or a wave-
length of about 1-8 µm), σxx(ω) of Cd3As2 increases linearly with increasing photon energy
[133, 134], which aligns well with our theoretical calculations for σxx(ω) of Na3Bi. In Na3Bi,
the short-wavelength boundary of the window is located in the range of about 2-10 µm and in-
creases linearly with increasing photon energy. In Fig. 3.1, we can see that the position of the
absorption window in graphene is at a lower photon energy range, which is significantly different
from that of type-I 3D DSMs.

(vi) In the long-wavelength range (λ > 100 µm), both σxx(ω) and σzz(ω) are mainly con-
tributed by intraband transitions and both increase rapidly with increasing wavelength. This is
similar to the Drude model of free electrons, where OC increases rapidly with increasing wave-
length [208].

In this study, we introduce the electron energy relaxation time τ as an input parameter in the
calculations of the OCs of Na3Bi to explore the effect of the broadening of the scattering state on
the OCs. Under fixed conditions, the effects of τ on σxx(ω) and σzz(ω) are presented in Fig. 3.8.
A longer τ corresponds to a smaller scattering state broadening, which in turn corresponds to a
sample with a higher carrier mobility. From the figure, we can see that in the short-wavelength
range, both σxx(ω) and σzz(ω) are not affected by τ . This is because the higher photon energy
allows for interband transitions, while the broadening of scattering states near the Fermi surface is
covered by interband scattering. Consequently, the interband OCs are not affected by τ . However,
in the long-wavelength range, where the OCs are mainly contributed by intraband transitions,
the influence of τ on the OCs becomes obviously. Even small changes in τ lead to noticeable
variations in the intraband OCs, and increasing τ will cause a redshift in both σxx(ω) and σzz(ω)
in the long-wavelength range. Therefore, in type-I 3D DSMs with longer energy relaxation times,
or in other words, higher electron mobilities, wider optical absorption windows can be observed.

In Fig. 3.9, we show σxx(ω) and σzz(ω) of Na3Bi as a function of the light wavelength λ at
different temperatures and fixed conditions. As seen in the figure, when the photon energy is very
high (λ < 2 µm), both σxx(ω) and σzz(ω) are not affected by temperatures. At higher photon
energies (2 µm < λ < 10 µm), σxx(ω) and σzz(ω) show only a small temperature dependence.
As shown in Fig. 3.6, when the photon energy h̄ω is larger than 2Ee

F , the interband transitions
of electrons will occur. Figure 3.5 shows that Ee

F will change with temperature, however, when
2Ee

F ≪ h̄ω , the changes in the Fermi level caused by temperature fluctuations are negligible for in-
terband transitions. Therefore, in the short wavelength range, σxx(ω) and σzz(ω) are independent
of temperature, which is also observed in the experiments of Cd3As2 [133]. In the intermediate
wavelength range, the optical absorption windows in σxx(ω) and σzz(ω) narrow with increas-
ing temperature. From Figs. 3.4, 3.5, and 3.6, we can find that as the temperature increases,
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Figure 3.8: (a), (b) Show the effects of energy relaxation time on σxx(ω) and σzz(ω), respectively.
The calculations are performed under the conditions of temperature T = 150 K, electron density
Ne = 2× 1019 cm−3, and hole density Nh = 2× 1018 cm−3. The OCs under different energy
relaxation times are represented by curves of different colors in the figure.

Ee
F −Eh

F decreases due to the Pauli blocking effect [222, 223]. Thus, the photon energy required
for interband transitions also decreases with increasing temperature, leading to small variations
in σxx(ω) and σzz(ω) in the range of about 2− 10 µm. This explains the experimental results
of Cd3As2 shown in Fig. 3.2 [133]. Furthermore, when Ee

F decreases while Eh
F increases, elec-

trons require larger photon energies to overcome the thermal broadening of the electronic state
distribution near the Fermi surface. Therefore, in the long wavelength range, intraband transitions
will require higher photon energy at elevated temperatures, resulting in a blueshift of the OCs in
the long wavelength range. This phenomenon has been reported in the reflection experiments of
Na3Bi [202].

Next, we further discuss the effect of different carrier densities on the OCs of Na3Bi. Using
fixed temperature, hole density, and energy relaxation time, the σxx(ω) and σzz(ω) as a function
of the light wavelength λ at different electron densities are shown in Fig. 3.10. First, we can see
that σxx(ω) and σzz(ω) in the short-wavelength region do not vary with electron densities. The
reason is that when h̄ω ≫ Ee

F −Eh
F , the changes in the Fermi level do not affect the interband

transitions. This is similar to the optical conductance of monolayer graphene shown in Fig. 3.1
[215, 216]. In the intermediate wavelength region, the optical absorption window of both σxx(ω)
and σzz(ω) undergoes a systematic blueshift with increasing electron density because increasing



50
CHAPTER 3. ENERGY BAND CHARACTERISTICS AND OPTICAL CONDUCTIVITY OF

TYPE-I 3D DSMS

Figure 3.9: (a), (b) show the σxx(ω) and σzz(ω) as a function of the light wavelength λ at different
temperatures, respectively. The fixed conditions are an electron density of Ne = 2×1019 cm−3, a
hole density of Nh = 2× 1018 cm−3, and an energy relaxation time of τ = 6.71 ps. The OCs of
Na3Bi at different temperatures correspond to curves of different colors in the figure.

Ne increases Ee
F , requiring both intraband and interband electrons to absorb higher photon ener-

gies. Additionally, it is found that the blueshift of the absorption peak in the x direction becomes
more pronounced with increasing electron density. We attribute this to the influence of the Berry
curvature. As shown in Figs. 3.4 and 3.6, due to the presence of the Berry curvature, the DOS for
electrons in the kz direction is much smaller than in the k direction, leading to smaller changes
in the electronic states in the kz direction as the Fermi level changes. Therefore, the variations of
σxx(ω) with varying electron densities are much stronger than in σzz(ω). In the long-wavelength
region, when the photon energy is lower, an increasing Ne causes a blueshift in both σzz(ω) and
σxx(ω), but the blueshift in σxx(ω) is weaker.

To further study the effect of the Berry curvature on the OCs of Na3Bi, we calculate σxx(ω)
and σzz(ω) for the lower Ne and Nh, shown as the orange curves in Fig. 3.10. At this point, Ne
is sufficiently low and Ee

F is located in the band inversion region, where the electron momentum
is strongly influenced by the Berry curvature. It can be seen that as Ne decreases, the absorption
peak of σzz(ω) changes slightly, whereas σxx(ω) changes significantly. The presence of Berry
curvature makes σzz(ω) of Na3Bi less affected by Ee

F , giving rise to a unique OC in the z direction
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Figure 3.10: (a), (b) Show the σxx(ω) and σzz(ω) as a function of the light wavelength λ at
different electron densities, respectively, where a fixed temperature T = 150 K, a hole density
Nh = 2×1018 cm−3, and an energy relaxation time τ = 6.71 ps are applied. The OCs of Na3Bi at
different electron densities is represented by the differently colored curves in the figure. Addition-
ally, the orange curve shows σxx(ω) and σzz(ω) for the case of low electron density Ne = 1×1018

cm−3 and low hole density Nh = 1×1017 cm−3.

compared to other 3D electronic materials. We also find that the influence of the Berry curvature
on the OCs is mainly concentrated in the interband transitions. Experimentally, methods for
tuning the optical absorption window using gate-voltage in graphene have already been realized,
as shown in Fig. 3.1 [216, 218], and in type-I DSMs, the gate-tunable Fermi level has also been
reported in transport experiments [90, 115]. Based on our theoretical results, we propose that
the OCs of type-I 3D DSMs can be tuned in all directions by changing the Fermi level, with the
out-of-plane OC exhibiting unique phenomena. This provides a theoretical foundation for the
application of type-I 3D DSMs in optoelectronic devices.

The results from Figs. 3.7-3.10 show that in the short-wavelength range, the σxx(ω) and σzz(ω)
of type-I 3D DSMs, which are dominated by interband transitions, are not affected by tempera-
ture, electron density, and energy relaxation time. However, in contrast to the results for graphene
shown in Fig. 3.1, σxx(ω) and σzz(ω) in the high photon energy range vary with wavelength λ

and exhibit absorption peaks. The unique band structure of type-I 3D DSMs results in anisotropic
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OCs throughout the wavelength range, with σxx(ω) generally larger than σzz(ω). The presence
of Berry curvature leads to an overall smaller σzz(ω), indicating that stronger light absorption
and optical response can be realized within the x-y plane of these materials. Finally, in type-I 3D
DSMs, the electron density can be tuned by doping or applying an external gate-voltage; thus the
tunable OCs of type-I 3D DSMs can be achieved.

3.4 Conclusions of this chapter

In this chapter, we first analyze the energy band characteristics of type-I 3D DSMs, with Na3Bi
as the main example. The electron density of states and Fermi levels in type-I 3D DSMs are
evaluated. Then, using the energy balance equation method, we calculate the anisotropic optical
conductivities (OCs) of an n-doped bulk Na3Bi. After considering different energy relaxation
times, temperatures, and electron densities, we also discussed the influence of Berry curvature
and sample conditions on the OCs of Na3Bi. The main conclusions of this chapter are as follows.

Type-I 3D DSMs possess an anisotropic energy dispersion and a pair of symmetric Dirac points.
Along the kz direction, the band has an inverted structure, which is related to the Berry curvature.
Based on Na3Bi, it is found that when the electron energy is below the vertex of the band in-
version, the electron momentum is significantly influenced by the Berry curvature, leading to
nontrivial density of states. Through the relationship between the Fermi level and electron den-
sity, it can be seen that at low electron densities, the Fermi level of Na3Bi lies within the band
inversion, causing electronic excitations to be strongly affected by the Berry curvature. Therefore,
Na3Bi at low electron densities will exhibit nontrivial excitations due to the Berry curvature.

The anisotropic OCs of an n-doped bulk Na3Bi mainly arises from the band inversion and the
Berry curvature in its band structure. At high photon energies (λ < 2 µm), the σxx(ω) and σzz(ω)
induced by different light polarization directions originate mainly from the interband transitions.
In this wavelength range, both σxx(ω) and σzz(ω) vary with light wavelength λ but are not af-
fected by sample conditions. In the intermediate wavelength range (2 µm < λ < 200 µm), both
σxx(ω) and σzz(ω) exhibit absorption windows, arising from the different energy requirements
for intraband and interband transitions. The Berry curvature mainly affects electronic states in
the kz direction, which results in σzz(ω) being smaller than σxx(ω), and changes in σzz(ω) with
different sample conditions being smaller than those in σxx(ω). This is a unique feature of the
OCs of type-I 3D DSMs, indicating that stronger optical absorption can be observed within the x-
y plane of a bulk type-I 3D DSM. In the long-wavelength range (λ > 100 µm), the photon energy
is lower, and thus the OCs are mainly contributed by intraband transitions. At this point, both
σxx(ω) and σzz(ω) increase rapidly with increasing λ , which is similar to the Durde optical con-
ductivities. The width and position of the optical absorption windows of Na3Bi are significantly
influenced by the energy relaxation time, the temperature, and the electron density. Our theoret-
ical study explains the experimental results, and in combination with experiments, we propose
that the OCs of type-I 3D DSMs are tunable by changing the temperature and electron density.

These conclusions help to deepen our understanding of the topological band structure and OCs
of type-I 3D DSMs. Our in-depth study of these materials also provides theoretical support for
further exploration of their optoelectronic properties and applications in optoelectronic devices.
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Plasmon modes of type-I 3D DSMs

The plasmon is the quantum of collective excitations of electrons, which can be regarded as
the quasiparticle of plasma oscillations. By analyzing the plasmon dispersion relation between
the frequency ω(q) and the momentum change q during electron-electron interactions, the prop-
erties of collective excitations in an electronic system can be studied. Theoretically, the plasmon
dispersion and the corresponding energy loss spectrum of a material can be calculated using the
RPA dielectric function; experimentally, as shown in Fig. 1.12(b), high-resolution energy loss
spectroscopy can provide relevant information on the plasmon modes of the material [172].

After the discovery of Dirac electronic systems, research in the field of plasmonics related to
these systems flourishes. Studies on graphene plasmons have revealed the plasmon dispersion
in 2D Dirac systems. As shown in Fig. 4.1(b), the plasmon in a 2D Dirac system exhibits
a dispersion relation of ω(q) ∝

√
q in the small q range. At large q, its collective excitations

are damped by single-particle excitations [204]. Figures 4.1(c) and 4.1(d) respectively show the
plasmon modes of a simple 3D Dirac cone (with the band structure EK,l = lh̄vF K, where l is
the band index, K is the 3D wave vector, and vF is the Fermi velocity) and a three-dimensional
electron gas (3DEG) system [with the band structure EK =(h̄K)2/(2m∗), where m∗ is the effective
mass of the electron] [204]. It can be seen that both the simple 3D Dirac cone and the 3DEG have
an initial plasma frequency at q → 0, with a dispersion relation of ω(q) ∝ q2 as q increases.
Moreover, their plasmon dispersions are isotropic [204, 208]. Most of the existing studies on
plasmons of type-I 3D DSMs are based on a simple Dirac cone [203, 204], and some have only
considered the linear term in Eq. (1.3) [202]. The theoretical results from these studies are similar
to those shown in Fig. 4.1(c) and 4.1(d).

However, in the previous chapter, Fig. 3.4 specified the band characteristics of type-I 3D DSMs.
Their electronic states possess topological structures, the electron momentum space exhibits the
Berry curvature, and there is an inversion structure in the band. Transport experiments further
demonstrate that electron excitations in type-I 3D DSMs cannot be explained by simple mod-
els [86, 87], such as the isotropic 3D Dirac cone or Hamiltonian considering only linear terms.
Therefore, the theoretical results from previous studies on the plasmon properties of type-I 3D
DSMs are incomplete. First, from the band structure, the plasmons in type-I 3D DSMs should
have anisotropy. Second, the presence of Berry curvature affects the electron momentum, imply-
ing that Berry curvature should have a significant effect on plasmons as well. Finally, varying the
electron density can position the Fermi level either inside or outside the band inversion, meaning
that the plasmon modes should differ between high and low electron densities.

Consequently, this chapter will make a comprehensive study of the plasmon modes in type-I

53
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Figure 4.1: (a) Plasmon dispersion relation (black curve) and the electron-hole (e-h) excitation
region (blue shaded area) of a one-dimensional Dirac system. For 1D systems, due to chirality
conservation, the e-h excitation region is just a straight line. (b) Plasmon dispersion relation of
a 2D Dirac system, graphene, where the green and black curves represent the long-wavelength
limit and the full plasmon curve, respectively. The blue shaded area indicates the e-h excitation
region. (c) Plasmon dispersion relation of an isotropic 3D Dirac cone. The green curve represents
the long-wavelength limit of the plasmon dispersion, while the black curve is the numerically
calculated full plasmon dispersion. The blue shaded area represents the e-h excitation region. (d)
Plasmon mode in a 3DEG in metals is denoted by ωp(q), with the shaded region representing the
e-h excitations. In the figure, µ and EF refer to the electronic chemical potential or Fermi energy,
and µ/(h̄vF) and kF refer to the Fermi wave vector. Adapted from Refs. [204, 208].

3D DSMs based on the effective Hamiltonian and using the RPA dielectric function. Considering
scenarios where the electron Fermi level is either above or below the band inversion vertex, we
will also explore the effect of Berry curvature on the plasmons of type-I 3D DSMs. Using the dif-
ferent band parameters of Na3Bi and Cd3As2, we can investigate the differences between similar
materials. From the band structure of type-I 3D DSMs, we will further discuss the similarities
and differences in their plasmon modes compared to graphene [224–227], 3DEG [207], WSMs
[228], and single Dirac cone models [203, 204].

4.1 RPA dielectric function for a type-I 3D DSM

The collective exciations in a solid normally occur within a range of smaller momentum and
lower energy, where the electronic system maintains spin degeneracy. Thus, we can begin with the
low-energy Hamiltonian, that is, Eq. (3.1) of the bulk type-I 3D DSMs. Assuming the Coulomb
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potential arising from bare electron-electron (e-e) interactions is V (R) = e2/(κ|R|), using the
RPA dielectric function, we can obtain the response to the electrostatic potential as

Vind(Q, t) =VQ ∑
K

∑
l,l′
⟨K+Q, l′|δN|K, l⟩⟨K+Q, l′|e−iQ·R|K, l⟩

= lim
η→0

VQV (Q, t)∑
K

∑
l,l′

Fl′,l(K,Q)Πl′,l(ω;K,Q), (4.1)

where

Πl′,l(ω;K,Q) = gs
fl′(EK+Q,l′)− fl(EK,l)

EK+Q,l′ −EK,l − h̄ω + ih̄η
(4.2)

is the density-density correlation function, fl(x) = [e(x−E l
F )/kBT + 1]−1 is the Fermi-Dirac distri-

bution function, where l =+1 and l =−1 denote the conduction and valence bands, respectively.
In addition, E l

F represents the Fermi level or chemical potential in the l band, gs = 2 represents
the spin degeneracy, κ is the dielectric constant of Na3Bi or Cd3As2, Q = (q,ϕ,qz) is the change
in the electron wave vector during e-e interactions, VQ = 4πe2/(κQ2) is the Fourier transform of
the 3D Coulomb potential, δN is the density fluctuation caused by the perturbation, and V (Q, t)
is the total self-consistent perturbative potential energy.

Using the definition of the dielectric function and Eq. (4.1), we can obtain

ε̂(ω,Q) = 1− Vind(Q, t)
V (Q, t)

= 1− lim
η→0

VQ ∑
K

∑
l,l′

Fl′,l(K,Q)Πl′,l(ω;K,Q), (4.3)

where the many-body form factor Fl′,l(K,Q) reads as

Fl′,l(K,Q) = |⟨K+Q, l′|e−iQ·R|K, l⟩|2 = |a∗K+Q,l′aK,l(1+b∗K+Q,l′bK,l)|2

=

∣∣∣∣ A2k|k+q|√
(ξ 2

K+Q,l′ +A2|k+q|2)(ξ 2
K,l +A2k2)

(
1+

ll′ξK,lξK+Q,l′

A2[k2 +(kx − iky)(qx + iqy)]

)∣∣∣∣2,
(4.4)

Here, aK,l , bK,l , and ξK,l come from the wave functions given by Eqs. (3.3) and (3.4), with
|k+q|2 = k2 + q2 + 2kq(cosθ cosϕ + sinθ sinϕ) = k2 + q2 + 2kqcos(θ − ϕ), where θ is the
angle between k and the x axis, and ϕ is the angle between q and the x axis. Then, we can obtain
the expression for the dielectric function of type-I 3D DSMs as

ε̂(ω,Q) = 1− lim
η→0

4πe2gs

κQ2 ∑
K

∑
l′,l

Fl′,l(K,Q)
fl′(EK+Q,l′)− fl(EK,l)

EK+Q,l′ −EK,l − h̄ω − ih̄η
. (4.5)

Through the Dirac identity, limη→0[1/(x± iη)] =P{1/x}∓ iπδ (x), where P{1/x} is the principal
value and δ (x) is the Dirac-δ function, we can obtain the real and imaginary parts of the dielectric
function of type-I 3D DSMs. Additionally, by replacing h̄η with a small energy Γ and assuming
that Γ represents energy relaxations caused by scattering mechanisms such as impurities, we can
avoid the issue of numerical nonconvergence in Eq. (4.5). Thus, we obtain the real part of Eq.
(4.5) as

εRe(ω,Q) =1− 4πe2gs

κQ2 ∑
K

∑
l′,l

Fl′,l(K,Q)[ fl′(EK+Q,l′)− fl(EK,l)]

×
(EK+Q,l′ −EK,l − h̄ω)

(EK+Q,l′ −EK,l − h̄ω)2 +Γ2 . (4.6)
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Meanwhile, the imaginary part of Eq. (4.5) can be written as

εIm(ω,Q) =
4π2e2gs

κQ2 ∑
K

∑
l′,l

Fl′,l(K,Q)[ fl′(EK+Q,l′)− fl(EK,l)]

×δ (EK+Q,l′ −EK,l − h̄ω). (4.7)

It is difficult to study the plasmon mode along any direction of the 3D wave vector Q, Q =
(q,ϕ,qz) where ϕ is the angle between the q and x axis. Instead we separate it in two components:
one perpendicular to the x-y plane of the type-I 3D DSMs, Q⊥ = (0,0,qz), will only act on kz
direction and one that is parallel to this plane.

4.1.1 Q perpendicular to the x-y plane

For Q perpendicular to the x-y plane of a type-I 3D DSM, the real part of ε̂(K,Q) from Eq.
(4.6) for Q⊥ = (0,0,qz) becomes

ε
⊥
Re(ω,qz) =1− 8e2

κπq2
z
∑
l′,l

∫
∞

0
dkz

∫
∞

0
dkkFl′,l(K,qz)[ fl′(EK,qz,l′)− fl(EK,l)]

×
(EK,qz,l′ −EK,l − h̄ω)

(EK,qz,l′ −EK,l − h̄ω)2 +Γ2 , (4.8)

with

EK,qz,l′ =C0 +C1(kz +qz)
2 +C2k2 + l′

√
M2

qz +A2k2,

Mqz = [M0 −M1(kz +qz)
2 −M2k2],

Fl′,l(K,qz) =

∣∣∣∣ A2k2√
(ξ 2

K,qz,l′
+A2k2)(ξ 2

K,l +A2k2)

(
1+

ll′ξK,lξK,qz,l′

/A2k2

)∣∣∣∣2,
where ξK,qz,l′ =

√
M2

qz +A2k2 − l′Mqz . Now, we assume that the broadening of the scattering

states near the Fermi level is caused by impurity scattering, so we have Γ = h̄/τ , where τ is the
relaxation time for electron-impurity scattering, and δ (x) ≈ (Γ/π)(x2 +Γ2)−1 can be used for
δ (x). Then the imaginary part of ε̂(K,Q) for Q⊥ = (0,0,qz) becomes

ε
⊥
Im(ω,qz) =

8e2h̄
κπτq2

z
∑
l′,l

∫
∞

0
dkz

∫
∞

0
dkkFl′,l(K,qz)[ fl′(EK,qz,l′)− fl(EK,l)]

×
[
Γ

2 +(EK,qz,l′ −EK,l − h̄ω)2
]−1

. (4.9)
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4.1.2 Q parallel to the x-y plane

In this case we take the wave vector Q as Q∥ = (q,ϕ,0) where ϕ is the angle between the q
and x axis. From Eq. (4.5), we obtain the real part of ε̂(K,Q) as

ε
∥
Re(ω,q,ϕ) =1− 4e2

κπ2q2 ∑
l′,l

∫
∞

0
dkz

∫ 2π−ϕ

0
dφ

∫
∞

0
dkkFl′,l(K,q,ϕ)

× [ fl′(EK,q,ϕ)− fl(EK)]
EK,q,ϕ −EK − h̄ω

(EK,q,ϕ −EK − h̄ω)2 +Γ2 , (4.10)

where
EK,q,ϕ =C0 +C1k2

z +C2|k+q|2 + l′
√

M2
q +A2|k+q|2,

Mq = M0 −M1k2
z −M2|k+q|2, and

Fl′,l(K,q,ϕ) =
∣∣∣∣ A2k|k+q|√

(ξ 2
K,q,ϕ,l′ +A2|k+q|2)(ξ 2

K,l +A2k2)

(
1+

ll′ξK,lξK,q,ϕ,l′

A2k|k+q|

)∣∣∣∣2,
with ξK,q,ϕ,l′ =

√
M2

q +A2|k+q|2 − l′Mq. By applying relaxation time approximation to Eq.

(4.5), the imaginary part of ε̂(K,Q) for Q∥ = (q,ϕ,0) has the form

ε
∥
Im(ω,q,ϕ) =

4e2h̄
κπ2τq2 ∑

l′,l

∫
∞

0
dkz

∫ 2π−ϕ

0
dφ

∫
∞

0
dkkFl′,l(K,q,ϕ)

× [ fl′(EK,q,ϕ)− fl(EK)]
[
Γ

2 +(EK,q,ϕ,l′ −EK,l − h̄ω)2
]−1

. (4.11)

Here, we made the change φ = θ −ϕ , so that |k+q|2 = k2 + q2 + 2kqcos(θ −ϕ). Then the
integration over θ from 0 to 2π becomes one over φ from 0 to (2π −ϕ), which describes how
different wave vector q directions affect the dielectric function.

4.1.3 Plasmon dispersion relation and energy loss spectrum

In the expression for the dielectric function of type-I 3D DSMs, the band index l =+1 or −1
represents the conduction or valence band, respectively. Thus, the dielectric function will have
four components as

∑
ll′

ε̂ = ε+++ ε−++ ε+−+ ε−−. (4.12)

Since we consider an n-doped type-I 3D DSM, where the valence band is fully occupied and
the conduction band is partially occupied, we have f−(EK,−) = 1. Therefore, in the case of
l = l′ =−1, Πl′,l(ω;K,Q) = 0. At the same time, the electron transitions from unoccupied states
(l = +1) to occupied states (l = −1) have almost no effect on the plasmon mode, so we take
ε+− ≃ 0. Consequently, we only consider the case of electronic excitations within the conduction
band (ε++) and electron transitions from the valence band to the conduction band (ε−+). The
dispersion relation of collective excitations, that is, the relationship between ω and Q, can be
obtained by solving the condition where the real part of the RPA dielectric function is zero, so
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we first solve for Re[ε̂(ω,Q)] = |εRe(ω,Q)|= 0. The corresponding energy loss spectrum can be
obtained by calculating the energy loss function, which is defined by the dielectric function as

Eloss =−Im
[

1
ε̂(ω,Q)

]
=

−εIm(ω,Q)

εRe(ω,Q)2 − εIm(ω,Q)2 . (4.13)

As shown in Fig. 3.4, a type-I 3D DSM exhibits an anisotropic energy dispersion; however, the
energy dispersion is isotropic in the x-y plane. Therefore, we only consider the simple case where
q is parallel to k, that is, setting ϕ = 0 in Eqs. (4.10) and (4.11). Following the basic process
[224], we first obtain the plasmon dispersion relation, and then we calculate the corresponding
energy loss using Eq. (4.13).

4.2 Result and discussion

In numerical calculations, we utilize the band parameters from Tab. 3.1 to perform calculations
for the plasmon modes of Na3Bi and Cd3As2. Furthermore, the static dielectric constants κ for
Na3Bi (∼ 5.99) and Cd3As2 (∼ 12) are sourced from relevant research [203, 229]. Experimental
studies in transport properties indicate that bulk samples of Na3Bi and Cd3As2 both have fast
lifetimes at low temperatures (∼ 1− 7 ps) [86, 123]. Therefore, we adopt ∼ 6.71 ps for Na3Bi
[86] and ∼ 6.87 ps for Cd3As2 [123] for the numerical calculations.

In Fig. 3.5 of Chapter 3, we see that the DOSs for 3DEG, graphene, and type-I 3D DSMs are
different, and therefore their plasmon dispersion relations should also be distinct. As shown in
Fig. 4.1(d), in the long-wavelength limit (Q → 0), the plasmon dispersion of the 3DEG exhibits
an optical mode, which is ωQ = ωP +3v2

F Q2/(10ωP) ∼ Q2, where ωP = [Nee2/(mκ0)]
1/2 is the

plasma frequency at Q = 0, κ0 is the vacuum permittivity, vF = h̄kF/m is the Fermi velocity of
electrons, and m is the statistic electron mass. In actual metals, such as sodium, there is generally
a high electron density of Ne ∼ 1023 cm−3, so the plasma energy (h̄ωP ∼ 5.9 eV) is much higher
than kBT ∼ 25 meV. This makes it difficult for plasmons in the 3DEG to be thermally excited,
indicating that it is experimentally challenging to directly observe plasmon-related phenomena.
As shown in Fig. 4.1(c), in the long-wavelength limit (q → 0) for a monolayer graphene, the
plasmon dispersion is ωq = (2e2EF q/κ0)

1/2 ∼ q1/2 ∼ N1/4
e [224–226], where EF = h̄vF kF and

kF = (πNe)
1/2. The plasmons in monolayer graphene exhibit an acoustic mode that strongly

depends on q [224, 225]. Additionally, the plasmon dispersion of a conventional two-dimensional
electron gas (2DEG) is similar to that of graphene, which is ωq ∼ q1/2 ∼ N1/2

e [226]. Thus, in
monolayer graphene and 2DEG, as q → 0, h̄ωP → 0, which differs significantly from the initial
energy h̄ωP of the 3DEG when Q→ 0. Therefore, plasmons in 2D systems are more easily excited
and can be more readily observed experimentally.

Figure 4.2 shows the plasmon dispersion and energy loss spectrum for different wave vector
directions of high electron density Na3Bi at fixed temperature. The corresponding Fermi level is
much higher than the band inversion [cf. the green-dashed line in Figs. 3.4(b) and 3.4(c)], and the
out-of-plane Fermi wave vector kFz is about five times larger than the in-plane Fermi wave vector
kF . We notice the following features.

(i) Figures 4.2(a) and 4.2(b) indicate that Na3Bi has anisotropic plasmon dispersion relations
along q and qz. This result is in line with the anisotropic band structure of Na3Bi along the k and
kz directions shown in Figs. 3.4(b) and 3.4(c). This result also suggests that the plasmon results
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Figure 4.2: Dispersion relations and energy loss functions in Na3Bi along different Q directions at
temperature T = 10 K, electron density Ne = 1×1019 cm−3 [see green-dashed lines in Figs. 3.4(b)
and 3.4(c), corresponding to EF1 ≃ 59.076 meV], and lifetime τ = 6.71 ps. In (a) and (c) we have
Q∥ = (q,ϕ,0) at ϕ = 0, the Fermi wave vector kF along the k direction is about ∼ 2.25× 108

m−1. In (b) and (d) we have Q⊥ = (0,0,qz), the Fermi wave vector kFz along the kz direction
is about ∼ 10.4× 108 m−1. The orange dotted curve in (a) is the graphene plasmon dispersion
relation for Ne = 1× 1012 cm−2. The black dashed-dotted curves in (a) and (b) represent, for
a 3DEG with m∗ ≃ 0.24me, the beginning of the particle-hole (p-h) excitations area in which
ω ≃ h̄2(q2 +2qkF)/2m∗.

of the simple 3D Dirac cone shown in Fig. 4.1(c) are insufficient to describe the plasmon modes
of type-I 3D DSMs.

(ii) In Fig. 4.2, it can be seen that at q → 0 and qz → 0, the plasmon energy h̄ω of Na3Bi
approaches zero in all directions, which is different from other 3D electronic systems, such as
the results shown in Figs. 4.1(c) and 4.1(d). The 3DEG has an initial plasmon energy h̄ωP =
[Nee2/(mκ0)]

1/2 when q → 0 and qz → 0 [207]; the plasmon of the 3D Dirac cone is similar to
the 3DEG [203]. Our results show differences from these 3D electronic systems, because we
considered a complete Hamiltonian of type-I 3D DSMs.

(iii) From Figs. 4.2(a) and 4.2(b), we find that the plasmons of Na3Bi exhibit a linear dispersion
relation (ω ∝ q and qz) in a small range of Q; however, as Q increases, the dispersion relation
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transitions to an optical-like dispersion similar to that of the 3DEG (ω ∝ q2 and q2
z ). Additionally,

the plasmon dispersion in the q direction remains linear over a larger momentum range. This
unique plasmon behavior arises from the band structure of type-I 3D DSMs. In Fig. 3.4(b), the
energy EK,l of Na3Bi shows an approximately linear band structure along the k direction; in Fig.
3.4(c), the band structure along the kz direction maintains linearity only near the Dirac point,
while at higher momenta and energies, it resembles the parabolic band structure of the 3DEG.
Therefore, we can find the unique plasmon dispersion relations of type-I 3D DSMs presented in
Fig. 4.2.

(iv) In accordance with Figs. 4.2(a) and 4.2(b), the energy loss spectrum of Na3Bi is presented
in Figs. 4.2(c) and 4.2(d), respectively. It can be observed that the plasmon dispersion curves
appear as energy loss peaks in the energy loss spectra for Q∥ and Q⊥. The energy loss spectra,
which vary with the wave vectors q and qz, have the same anisotropy as plasmon dispersions.
Furthermore, the energy loss peaks gradually broaden with increasing q and qz, but remain con-
vergent even at higher energies h̄ω = 2EF , which is different from graphene [224, 225]. The
energy loss peaks obtained through theoretical calculations can be observed experimentally using
high-resolution energy loss spectrum measurements, as shown in Fig. 1.12(b). Therefore, our
theoretical research can provide guidance for experiments for plasmons in type-I 3D DSMs.

(v) Figure 4.1 shows that the plasmon dispersions of 3DEG [208], graphene [224, 225], and
a single Dirac cone [203, 204] all enter the particle-hole (p-h) excitation continuum, indicating
that these materials will have single-particle excitations in regions of higher energy and higher
momentum, leading to the decay of collective excitations [207]. Taking the 3DEG result in Fig.
4.1(d) as an example, the plasmon energy for Q > Qc satisfies h̄ω < h̄2(Q2

c + 2QcKF)/(2m∗).
In 3DEG, the momentum at the intersection of the plasmon energy and the boundary of the p-h
excitation continuum is Qc [207]. Considering that Na3Bi is a 3D electronic system where the
Fermi wave vector is difficult to define, we did not use the conventional definition of the p-h
excitation continuum for Dirac systems [224, 225], but instead used the definition from 3DEG.
As shown in Fig. 4.2, the plasmons in Na3Bi appear only in a small momentum region, where the
plasmon energy is overall higher than the p-h excitation continuum. It should be noted that the
results based on the effective Hamiltonian are suitable only for excitations at smaller momenta
and smaller energies. Therefore, we believe that in bulk Na3Bi, for small q and qz, the plasmons
will not be affected by single-partical excitations and will not decay.

Figure 4.2 shows the anisotropic plasmon modes of bulk Na3Bi at a high electron density.
However, when the electron density is low, Ne = 1× 1017 cm−3, and the Fermi level is within
the region of band inversion [see the green dashed lines in Figs. 3.4(b) and 3.4(c)], the collective
excitations of the bulk Na3Bi undergo significant changes, as shown in Fig. 4.3. Although the
results in Figs. 4.2 and 4.3 appear to have a similar dispersion, the momentum range of the plas-
mons changes significantly. Specifically, the plasmon wave vector qz in Fig. 4.3(b) is drastically
reduced, shrinking by about 30 times compared to qz in Fig. 4.2(b), while q is only reduced by
a factor of 4, which is proportional to the reduction of the Fermi level from EF1 to EF2. From
the band structure characteristics of type-I 3D DSMs, as shown in Fig. 3.5(a), the presence of
the Berry curvature strongly affects the electron momentum in Na3Bi when EF is below the band
inversion vertex E1, and the DOS decreases rapidly. As seen in Fig. 3.4(c), the Berry curvature
mainly affects the DOS and electron excitations in the kz direction. Therefore, reducing the elec-
tron density in an n-doped Na3Bi will cause the collective excitations in the Q⊥ direction to reach
a higher energy at smaller momenta. The influence of the Berry curvature on electron excitations
is also reported in the previous transport studies of Na3Bi [87].
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Figure 4.3: As in Fig. 4.2 with electron density of Na3Bi being Ne = 1× 1017 cm−3 [see black
dotted lines in Fig. 3.4(b) and 3.4(c), corresponding to EF2 ≃ 14.634 meV]. For Q∥ = (q,ϕ,0)
at ϕ = 0, the Fermi wave vector kF along the k direction is about ∼ 0.298 × 108 m−1. For
Q⊥ = (0,0,qz), the Fermi wave vector kFz along the kz axis is about ∼ 9.24×108 m−1.

The results in Figs. 4.2 and 4.3 are derived from bulk Na3Bi, while the plasmon results based
on Cd3As2 are shown in Figs. 4.4 and 4.5. From the figures, we can see that the plasmon
dispersion relations and the energy loss spectra of bulk Cd3As2 exhibit similar characteristics to
those of Na3Bi. (i) The plasmon dispersion relations of a bulk Cd3As2 also shows h̄ω → 0 as
q → 0 and qz → 0. (ii) Collective excitations in a bulk Cd3As2 are also anisotropic. Its plasmons
exhibit an approximately linear dispersion relation within small ranges of q and qz, but as q and
qz increase, the dispersion transitions to a parabolic-like relation. Additionally, the dispersion
shows a broader linear range in the q direction. This is due to Cd3As2 having a type-I DSM band
structure similar to that of Na3Bi. (iii) The plasmon energy in bulk Cd3As2 also does not enter the
p-h excitation continuum, avoiding decay. Figure 4.5 shows the plasmon modes of bulk Cd3As2
at low electron density, exhibiting changes similar to those seen in low-electron-density Na3Bi in
Fig. 4.3. The qz corresponding to the plasmon energy is significantly reduced compared to the
high-electron-density sample, which is due to the presence of the Berry curvature in Cd3As2 as
well.

Figures 4.4 and 4.5 show that the plasmon modes of Cd3As2 are similar to those of Na3Bi,
but there are some differences. As introduced in Fig. 3.4 and the related discussion, the band
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Figure 4.4: Plasmon dispersions and energy loss functions in Cd3As2 along different Q directions
at fixed temperature T = 10 K, electron density Ne = 1× 1019 cm−3 [see Fig. 3.4(e) and 3.4(f),
corresponding to EF1 ≃ −185.651 meV], and lifetime τ = 6.87 ps. For Q∥ = (q,ϕ,0) at ϕ = 0,
the Fermi wave vector kF along the k direction is about ∼ 1.33× 108 m−1. For Q⊥ = (0,0,qz),
the Fermi wave vector kFz along the kz axis is about ∼ 0.68×108 m−1. The orange dotted curve
in (a) is graphene’s dispersion relation for Ne = 1×1012 cm−2. The black dashed-dotted curves
in (a) and (b) represent, for a 3DEG with m∗ ≃ 0.24me, the beginning of the particle-hole (p-h)
excitations area in which ω ≃ h̄2(q2 +2qkF)/2m∗.

inversion and the Berry curvature of Cd3As2 are smaller compared to Na3Bi. When we reduce
the electron density, the Fermi levels of both Na3Bi and Cd3As2 decrease accordingly. However,
as seen in Figs. 3.4(c) and 3.4(f), at lower Fermi levels, the band inversion in the kz direction of
Na3Bi is much stronger than in Cd3As2. Therefore, the influence of Berry curvature on electron
momentum in Na3Bi is much bigger than in Cd3As2, resulting in stronger anisotropic collective
excitations in Na3Bi. Consequently, from the plasmon results of Na3Bi in Figs. 4.2 and 4.3, we
can observe that the reduction in electron density causes kFz to decrease to about 0.9 of its original
value, but it remains approximately 20 times larger than kF . At this point, the plasmon wave vector
q decreases about 4 times, but qz decreases about 30 times, showing the strong influence of the
Berry curvature on the kz-direction electron excitations of Na3Bi. In contrast, the plasmon results
of Cd3As2 in Figs. 4.4 and 4.5 show that at a high electron density, kF of Cd3As2 is larger than
kFz , but when the electron density is reduced, kF becomes smaller than kFz . Therefore, we can see
that the reduction in the plasmon wave vector of Cd3As2 is much less pronounced than in Na3Bi,
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Figure 4.5: As in Fig. 4.4 with electron density of Cd3As2 being Ne = 1× 1017 cm−3 [see Fig.
3.4(e) and 3.4(f), corresponding to EF2 ≃−211.237 meV]. For Q∥ = (q,ϕ,0) at ϕ = 0, the Fermi
wave vector kF along the k direction is about ∼ 0.301×108 m−1). For Q⊥ = (0,0,qz), the Fermi
wave vector kFz along the kz axis is about ∼ 0.438×108 m−1.

indicating that Cd3As2 has a smaller Berry curvature effect and a less anisotropic plasmon mode.

Finally, Fig. 4.6 shows the plasmon modes of type-I 3D DSMs when both q and qz are not
zero. We calculated the dispersion relation of h̄ω and qz for different fixed values of q, and we
also calculated the dispersion relation of h̄ω and q for different fixed values of qz. Figs. 4.6(a) and
4.6(b) present the results for Na3Bi, while Figs. 4.6(c) and 4.6(d) show the corresponding results
for Cd3As2. In these figures, we observe that for qz ̸= 0 or q ̸= 0, the plasmon dispersion relation
in type-I 3D DSMs exhibits a parabolic-like dispersion similar to that of 3DEG, but the anisotropy
of the collective excitations is still clearly visible. Additionally, in Fig. 4.6(c), when qz ̸= 0, we
observe a peculiar behavior where h̄ω first decreases and then increases as q increases at small q.
In Fig. 4.6(d), a similar situation arises where, at very small q, a single h̄ω corresponds to two
different values of qz. We believe this is due to the significant influence of the Berry curvature
on the electron momentum near the Dirac point in type-I 3D DSMs. As shown in Fig. 3.3,
Berry curvature exerts a strong influence on electron momentum near the Dirac point, leading
to a nontrivial topological structure in electron momentum. During the process of the collective
excitations, this phenomenon affects the plasmon dispersion near small Q, which explains the
nontrivial plasmon modes observed in Fig. 4.6(c).
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Figure 4.6: (a) Plasmon dispersion for Na3Bi as a function of q at fixed temperature T = 10 K,
electron density Ne = 1×1019 cm−3, lifetime τ = 6.71 ps, and fixed qz. (b) Plasmon dispersion
for Na3Bi with q and qz interchanged is shown. (c), (d): idem. as in (a) and (b), respectively, for
Cd3As2 for the same temperature and electron density, and τ = 6.87 ps. All curves for selected
qz or q isovalues are marked as shown in the insets.

After synthesizing all the results from Figs. 4.2 to 4.6, we can see that the collective exci-
tations in bulk samples of type-I 3D DSMs possess unique properties that differ from those of
other materials. Both graphene and type-I 3D DSMs exhibit similar properties of gapless Dirac
fermions, such as high carrier mobility and excellent optoelectronic properties. However, as a 3D
material, it is easier to obtain high-quality samples of type-I 3D DSMs. Besides, in type-I 3D
DSMs, plasmons can be readily thermal-excited and observed. In contrast, in metallic 3D mate-
rials, plasmons are difficult to thermally excite and observe because their plasmon energy h̄ωP is
much higher than kBT . The tunability of the Fermi level in type-I 3D DSMs has been reported
[90, 115, 123]. Therefore, we propose that controlling the distance between the Fermi level and
the band inversion can tune the collective excitations of type-I 3D DSMs, particularly in the kz
direction. This distinguishes them from traditional 3D electronic materials, multilayer graphene
[227], WSMs [228], and isotropic DSMs [203, 204]. Furthermore, in type-I 3D DSMs, it is also
possible to find anisotropic surface plasmons influenced by Berry curvature. Considering the ef-
fects of magnetic fields, optical fields, or phonons, type-I 3D DSMs are also expected to exhibit
anisotropic plasmon polaritons.
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4.3 Conclusions of this chapter

In this chapter, we based on the effective k ·p Hamiltonian of type-I 3D DSMs, using the RPA
dielectric function to calculate the plasmon dispersion relations and energy loss spectra of Na3Bi
and Cd3As2 under different directions and electron densities.

Our research finds the following features. (i) Both Na3Bi and Cd3As2 exhibit anisotropic plas-
mon dispersion relations due to the similar band structure of type-I 3D DSMs, but the anisotropy
in Cd3As2 is smaller than that in Na3Bi, which arises from the smaller band inversion and Berry
curvature of Cd3As2. (ii) The plasmon energy approaches zero as their plasmon wave vector nears
zero, and a same phenomenon appears in the energy loss spectra, indicating that the collective ex-
citations in type-I 3D DSMs can be more easily excited, which distinguishes them from metals
and other 3D electronic systems. (iii) Corresponding to the band structure of type-I 3D DSMs,
their plasmons exhibit a linear dispersion relation at a small wave vector, which transitions to a
parabolic dispersion relation as the wave vector increases. (iv) By studying the plasmon modes
of Na3Bi and Cd3As2 at different electron densities, we find that the Berry curvature in type-I
3D DSMs has a significant effect on their collective excitations, especially along the kz direction,
where the plasmon wave vector experiences a substantial reduction when the Fermi level lowers
into the band inversion region. (v) By controlling the electron density to adjust the the Fermi
level, the plasmon modes in type-I 3D DSMs can be tuned, particularly in the kz direction.

From our results in this chapter, we further propose that anisotropic surface plasmons and
plasmon polaritons should also exist in type-I 3D DSMs, and these properties should be influenced
by the Berry curvature as well. Furthermore, our research helps for a deeper understanding of
the topological properties of type-I 3D DSMs, as well as for understanding the mechanisms of
electronic excitations near their Dirac points.
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Anisotropic optical conductivity of type-II

3D DSMs

In Chapter 3, we show the experimental results of the optoelectroni properties of monolayer
graphene and the type-I 3D DSM Cd3As2 in Figs. 3.1 and 3.2, respectively. Our research in
Chapter 3 explains the optical conductivity (OC) of Cd3As2 and explored the physical mecha-
nisms of OC based on the band structure of type-I 3D DSMs. In recent years, another type of
Dirac semimetal, the type-II 3D DSMs, has been theoretically predicted and experimentally ver-
ified. This new type of Dirac semimetal also exhibits characteristics of Dirac fermions, such as
massless, gapless, and linear energy dispersion at the Dirac point. Therefore, it can be expected
that the OC of type-II 3D DSMs should have similarities with that of type-I, such as the optical
absorption window presented in Figs. 3.1 and 3.2. However, as shown in Fig. 1.10, the 3D Dirac
cone of type-II 3D DSMs is strongly tilted along the kz direction, resulting in a Fermi surface
at the Dirac point that outlines a 2D wave vector contour of both conduction and valence bands.
This is in sharp contrast to the point-like Fermi surface at the Dirac point of type-I 3D DSMs
[see Fig. 1.5(f)]. Consequently, the OC of type-II and type-I 3D DSMs should exhibit essential
differences because of the distinct band structures, prompting us to investigate the OC of type-II
3D DSMs.

As introduced in Sec. 1.2.4, most research on the optoelectronic properties of type-II 3D DSMs
is based on their thin-film samples. In such cases, their semimetallic state will have a phase tran-
sition to a semiconductor state [170]. Additionally, a limited amount of work has studied the ideal
tilted 3D Dirac cone, but these mainly consider the effect of the tilt index of the 3D Dirac cone on
optoelectronic properties at without a specific material [205, 206]. Thus, the properties of OC for
bulk samples of type-II 3D DSMs remain unclear. Among the reported type-II 3D DSMs, PtTe2
stands out from other DSMs due to easier preparation and strong stability in air [70, 153, 154],
quickly becoming an important material for studying the physical properties of type-II DSMs. In
research on PtTe2, many unique properties have been discovered, such as anisotropic and high
carrier mobility [156, 157], ultrahigh electrical conductivity [160–162], and a phase transition
from DSM to semiconductor state with reducing thickness [170]. In terms of optoelectronic
properties, experiments have reported wide-spectrum photodetectors and sensors based on PtTe2,
as well as other related optoelectronic devices [180–183, 190, 191]. The unique and excellent
terahertz optoelectronic properties of PtTe2 have also been discovered [178, 179]. In addition, the
tunability of the Fermi level of bulk PtTe2 has been experimentally reported [230]. These stud-
ies demonstrate the potential of type-II 3D DSMs in optoelectronic applications. Furthermore,
in-depth exploration of these properties can not only advance the fundamental condensed matter

67
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physics but also promote further technological developments.

Therefore, in this chapter, we consider the interaction between an n-doped bulk PtTe2 and the
linearly polarized light incident from different directions. Based on the effective Hamiltonian of
bulk PtTe2, we use the energy balance equation to calculate its OC. In addition, considering the
experimental conditions, we further investigate the effects of temperature, energy relaxation time,
and electron density on the OC of the bulk PtTe2.

5.1 One-electron aspects

PtTe2 crystallizes in the trigonal CdI2-type crystal structure, space group P3m1 (No. 164). The
bulk PtTe2 is a periodic stack of basic monolayers with weak interactions between those layers.
In each monolayer, the Pt atoms are sandwiched by top and bottom Te atoms, whereas two Te
atoms are related by crystal symmetries [see Figs. 1.10(a) and 1.10(b)]. The band structure,
calculated using density functional theory (DFT) [69] and verified using ARPES [70], indicates
that two symmetric Dirac points appear on the A−Γ−A′ axis at ±D. In addition, the ARPES
results show that the energy dispersion of bulk PtTe2 remains linear up to about 0.8 eV counting
from Dirac points [70], thus the linearized Hamiltonian of 3D DSMs is effective in studying its
near- to far-infrared optical properties [69, 172].

5.1.1 Effective Hamiltonian of the type-II 3D DSMs

In the vicinity of the two Dirac points, the effective low-energy Hamiltonian for a type-II 3D
DSM, which describes an anisotropic and tilted 3D Dirac cone, is given by [69]

HK,χ = h̄(χvtkzI + vxkxσx − vykyσy −χvzkzσz)

= h̄
[

χkz(vt − vz) vxkx + ivyky
vxkx − ivyky χkz(vt + vz)

]
. (5.1)

Here, χ =±1 represents two Dirac cones located at ∓D along the A−Γ−A′ axis with tilt in the
opposite direction, I is the 2×2 identity matrix, and σi’s are the Pauli matrices. The corresponding
eigenvalues were analytically obtained and read as

Eχ

K,l = χ h̄vtkz + lh̄
√

v2
xk2

x + v2
yk2

y + v2
z k2

z , (5.2)

where the band index l = +1(−1) denotes the conduction (valence) band. Low-energy fittings
based on Eq. (5.2) to the structure of the DFT band find that in-plane velocities are isotropic,
vx = vy, whereas out-of-plane velocities give vt > vz, thus the 3D Dirac cones are strongly tilted
in kz direction [69, 70]. In a cylindrical coordinate system, we have K = (kx,ky,kz) = (k,θ ,kz)
with θ being the angle between the k and the x-axis. Due to the isotropic velocities in the x-y
plane, we can rewrite Eq. (5.2) as

Eχ

K,l = χ h̄vtkz + lh̄
√

v2
xk2 + v2

z k2
z = χ h̄vtkz + lh̄εK, (5.3)

with

εkx = vxkx, εky = vyky, εkz = vzkz,
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and

εK =
√

ε2
kx
+ ε2

ky
+ ε2

kz
=
√

v2
xk2 + ε2

kz
.

Meanwhile, the eigenfunction of the electrons can also be analytically obtained as

ψ
χ

K,l(R) = |K,χ, l⟩=
aχ

K,l√
2

(
1

bχ

K,l

)
e−iK·R, (5.4)

where

aχ

K,l =

[
ε2

kx
+ ε2

ky

ε2
K +χlεkzεK

]1/2

=
vxk

(ε2
K +χlεkzεK)1/2 ,

bχ

K,l =
χεkz + lεK

εkx + iεky

=
χεkz + lεK

vxkeiθ .

5.1.2 Fermi level of electrons and holes

With the time-reversal symmetry in type-II 3D DSMs, we have HK,+ = H∗
−K,− and can intro-

duce a valley degeneracy factor gv = 2. In addition, for a low energy case the system retains
spin degeneracy [69, 70]. Therefore, in the following calculations we use the degeneracy factor
g = gsgv = 4.

In an n-doped Type-II 3D DSM, the relationship between the Fermi level Ee
F of electrons and

the electron density Ne at a finite temperature can be obtained by applying the carrier number
conservation, which reads as

Ne =
2

π2

∫
∞

−∞

dkz

∫
∞

0
dkk[e(EK,+−Ee

F )/kBT +1]−1, (5.5)

with f (x) = [e(x−EF )/kBT +1]−1 being the Fermi-Dirac distribution function.

It should be noted that for an n-doped Dirac system, if N is the electron concentration in the
absence of the light field, the electron density in the presence of the light field should be Ne =
N +∆Ne, with ∆Ne being the photo-excited electron density. Due to carrier number conservation,
we have ∆Ne = Nh, with Nh being the hole density in the valence band. Thus, the Fermi level of
holes Eh

F in the valence band can be found through

Nh =
2

π2

∫
∞

−∞

dkz

∫
∞

0
dkk{1− [e(EK,−−Eh

F )/kBT +1]−1}. (5.6)

5.2 Anisotropic optical conductivity of a type-II 3D DSM

In the present study, we consider electrons in an n-doped Type-II 3D DSM that interact with a
linearly polarized light field as a continuous wave. Because of the asymmetric electronic energy
spectrum, as given by Eq. (5.3), the polarization direction in the x-y plane and the z direction
must be considered separately.
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5.2.1 Carrier-photon scattering rates

Assuming that the light field is sufficiently weak, we can take the carrier-photon (c-p) inter-
actions as an elastic scattering process. Therefore, we can treat c-p interactions as perturbations
by taking K → K− eA(t)/h̄ in Eq. (5.1) with A(t) being the vector potential of the light field.
Considering only one tilted Dirac cone by taking χ =+1 with valley degeneracy, the perturbation
Hamiltonian with the linearly polarized light field in the x-y plane (here we chose the x direction)
and along the z direction through H[K− eA(t)/h̄]≃ HK +Hc−p(t) can be obtained, respectively,
as

Hx
c−p(t) =−evxA(t)

(
0 1
1 0

)
, (5.7)

and

Hz
c−p(t) = eA(t)

(
(vz − vt) 0

0 −(vz + vt)

)
, (5.8)

where A(t) = (F0/ω)sin(ωt) = (F0/2iω)(eiωt − e−iωt), with F0 being the electric field strength
and ω the frequency of the light field.

Using Fermi’s golden rule as we introduced in Eq. (2.24), the first-order steady-state electronic
transition rate of the c-p interaction reads as

W j,c−p
ζ ζ ′ =

2π

h̄
|⟨ζ ′|H j

c−p|ζ ⟩|2δ (Eζ ′ −Eζ − h̄ω)

=
2π

h̄

(
ev2

xF0

2ω

)2

|G j
ζ ζ ′ |2δK,K′δ (Eζ ′ −Eζ − h̄ω), (5.9)

where we used the notation |ζ ⟩≡ |K, l⟩ for clarity. δK,K′ and δ (Eζ ′−Eζ − h̄ω) are due to momen-
tum and energy conservation laws during a electron-photon scattering process with absorption of
a photon h̄ω . j = x or z represents the light field polarizing parallel or perpendicular to the x-y
plane, with

|Gx
ζ ζ ′ |2 =

2k2[ε2
kz
+ ε2

K + εkzεK(l′+ l)]

ε4
K + ll′ε2

kz
ε2

K + εkzε
3
K(l + l′)

+
2k2[ε2

kz
+ ll′ε2

K + εkzεK(l + l′)]cos(2θ)

ε4
K + ll′ε2

kz
ε2

K + εkzε
3
K(l + l′)

,

and

|Gz
ζ ζ ′ |2 =

[
(vz − vt)k2 − (vz + vt)(εkz + l′εK)(εkz + lεK)/v2

x
]2

ε4
K + ll′ε2

kz
ε2

K + εkz ε
3
K(l + l′)

.

5.2.2 Optical conductivity of a type-II 3D DSM

In this study, we assume that the momentum distribution function of carriers in a type-II 3D
DSM can be described by a statistical energy distribution function, that is, fζ = fl(K)≈ fl(EK,l)

with f+(EK,+) = [e(EK,+−Ee
F )/KBT + 1]−1 and f−(EK,−) = [e(EK,−−Eh

F )/KBT + 1]−1 being, respec-
tively, the Fermi-Dirac function for electrons and holes. We change only the polarized directions
of the light field and retain its strength, so we take F0 = Fx = Fz while we calculate the OCs of
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PtTe2 by using Eqs. (5.9) and (2.33). Applying the c-p scattering rates W j,c−p
ζ ζ ′ obtained from Eq.

(5.9) to Eq. (2.33) with K = K′ from the momentum conservation and Eζ ′ −Eζ = h̄ω from the
energy conservation, the in-plane OCs, σ ll′

xx (ω), for the light polarized parallel to the x-y plane
read as

σ
ll′
xx (ω) =

4e2v4
x

π2ω
∑
l,l′

∫
∞

−∞

dkz

∫ 2π

0
dθ

∫
∞

0
dkk|Gx

ζ ζ ′ |2δK,K′

× fl(EK,l)[1− fl′(EK,l′)]δ (EK,l′ −EK,l − h̄ω). (5.10)

Here, by applying Eq. (5.9), |Gx
ζ ζ ′ |2 can be written in the form |Gx

ζ ζ ′ |2 = gx
ll′(K)+g1 cos(2θ), and∫ 2π

0 cos(2θ)dθ = 0 analytically proves that σ ll′
xx (ω) of a type-II 3D DSM is independent of the

polarization directions; consequently, we have σ ll′
xx (ω) = σ ll′

yy (ω). By using the relaxation-time
approximation of the Dirac-δ function, i.e., δ (E)≈ (Γ/π)(E2 +Γ2)−1 is the Lorentzian function
with Γ = h̄/τ , we now get the intraband OCs as

σ
ll
xx(ω) =

8σ0v4
x

π2ω2
ωτ

1+(ωτ)2

∫
∞

−∞

dkz

∫
∞

0
dkkgx

ll(K) fl(EK,l)[1− fl(EK,l)], (5.11)

with

gx
ll(K) =

2k2[ε2
kz
+ ε2

K +2lεkzεK]

ε4
K + ε2

kz
ε2

K +2lεkz ε
3
K

.

Here, σ0 = e2/h̄ is the quantum conductance, τ is the energy relaxation time due to the broadening
scattering of the c-p interaction. For interband transitions, we only consider the photon absorption
so that we have σ+−

xx (ω) ≃ 0, and the interband OC for electrons scattered by photons from the
valence band to the conduction band reads as

σ
−+
xx (ω) =

16σ0v4
xτ

π2ω

∫
∞

−∞

dkz

∫
∞

0
dk

k3(ε2
kz
+ ε2

K)

ε4
K − ε2

kz
ε2

K

f−(EK,−)[1− f+(EK,+)]

1+(ω −2
√

v2
xk2 + v2

z k2
z )

2τ2
. (5.12)

For light polarized in the z direction, the same approach as σ ll′
xx (ω) can be applied, and the

out-of-plane OC, σ ll′
zz (ω), has the formula

σ
ll′
zz (ω) =

8e2v4
x

πω
∑
l,l′

∫
∞

−∞

dkz

∫
∞

0
dkk|Gz

ζ ζ ′ |2δK,K′

× fl(EK,l)[1− fl′(EK,l′)]δ (EK,l′ −EK,l − h̄ω). (5.13)

Here, intraband OCs (l = l′ =±1) read as

σ
ll
zz(ω) =

8σ0v4
x

π2ω2
ωτ

1+(ωτ)2

∫
∞

−∞

dkz

∫
∞

0
dkk|Gz

ll(K)|2 fl(EK,l)[1− fl(EK,l)], (5.14)

where

|Gz
ll(K)|2 =

[(vz − vt)k2 − (vz + vt)(εkz + lεK)
2/v2

x ]
2

ε4
K + ε2

kz
ε2

K +2lεkzε
3
K

.



72 CHAPTER 5. ANISOTROPIC OPTICAL CONDUCTIVITY OF TYPE-II 3D DSMS

For interband OCs, σ+−
zz (ω) ≃ 0 because we only consider photon absorption, and σ−+

zz (ω) can
be written as

σ
−+
zz (ω) =

16σ0v4
xτ

π2ω

∫
∞

−∞

dkz

∫
∞

0
dkk|Gz

−+(K)|2
f−(EK,−)[1− f+(EK,+)]

1+(ω −2
√

v2
xk2 + v2

z k2
z )

2τ2
, (5.15)

with

|Gz
−+(K)|2 =

[(vz − vt)k2 − (vz + vt)(ε
2
kz
− ε2

K)/v2
x ]

2

ε4
K − ε2

kz
ε2

K
.

5.3 Result and discussion

It is worth emphasizing that band structures of bulk 3D DSMs are different from those of single-
layer or multilayer 3D DSMs. While in bulk 3D DSM samples, which are unconfined along the
z axis, kz is a continuous variable, in a confined system, kz is quantized for sufficiently small
thickness due to the formed quantum-well structure [53, 54, 122]. Such finite-size effect removes
the band inversion and opens a band gap for sufficiently thin samples. Hence, the topological
phase transition can be achieved in 3D DSMs through reducing the dimension (by reducing the
thickness to a few layers), where the semimetal-insulator phase transition in type-I 3D DSMs
[53, 54, 129] and the semimetal-semiconductor phase transition in type-II 3D DSMs [171] can
be observed. In our case, the bulk PtTe2 with a stable Dirac semimetal state is extended, and the
corresponding effective Hamiltonian can be described by Eq. (5.1).

In numerical calculations, the low-energy fittings to the DFT band structure show that the
corresponding velocities around the Dirac point of a bulk PtTe2 are vx = vy = 0.65× 106 m/s,
vz = 0.35×106 m/s, and vt = 0.51×106 m/s [172]. Supercritically tilted (vt > vx) type-II Dirac
cones have open hyperbolic isoenergy contours. Therefore, the Fermi wave vector kFz along kz,
which has two components k±Fz = Ee

F/[h̄(vt ± vz)] due to the geometric structure of the energy
spectrum, should be applied to the numerical integrals [205, 206]. At a finite temperature, the
Fermi-Dirac function indicates that electrons are distributed mainly within the range from −2k−Fz
to 2k−Fz, which gives reasonable limits to use in our calculations. In addition, optical pump-
terahertz probe (OPTP) spectroscopy and ultrafast time-resolved degenerate optical pump-optical
probe (OPOP) measurements show that high quality PtTe2 samples have fast lifetimes (τ < 1 ps)
[178, 179], which motivates the consideration of different energy relaxation times in our study.

Figure 5.1 summarizes the basic properties of PtTe2, i.e., its crystal structure in Figs. 5.1(a)
and 5.1(b), the calculated 3D tilted Dirac cone in Figs. 5.1(c) and 5.1(d), and the low-energy
dispersion of its electrons or holes in Figs. 5.1(e) and 5.1(f). As shown in Figs. 5.1(a) and
5.1(b), the atomic structure of PtTe2 consists of three covalently bonded Te-Pt-Te atomic planes,
where six Te atoms surround the central Pt atom with crystal constants of a = b = 4.09 Å, and
c= 5.34 Å [70]. The spacing between the layers is 0.59 nm, exhibiting weak van der Waals (vdW)
interactions. Based on DFT calculations, the effective 4 × 4 Hamiltonian with time-reversal,
inversion, and D3

3d symmetries is obtained, resulting in an energy dispersion with two gapless 3D
Dirac cones at Kc = (0,0,±kc

z) [69]. One of the tilted 3D Dirac cones around Kc = (0,0,kc
z) is

shown in Figs. 5.1(c) and 5.1(d). By expanding the Hamiltonian near the Kc point and keeping
only the linear order terms, we arrive at Eq. (5.1). The corresponding energy spectrum is shown
in Figs. 5.1(e) and 5.1(f), and the Dirac point is settled at zero energy. Equation (5.2) can be
written in the form EK,± = TK±UK, where UK is a potential energy component and TK is a linear
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Figure 5.1: Crystal structure and energy dispersion of a type-II 3D DSM PtTe2. Top (a) and side
(b) views of the PtTe2 crystal structure with P3̄m1 symmetry. Green balls are Te atoms, and red
balls are Pt atoms. The dashed lines delimit the unit cell. 3D band structure of PtTe2 on the kx-ky
plane and kx-kz plane is shown in (c) and (d), respectively, where the kx-ky plane corresponds to
the a-b plane in (a) and kz corresponds to the c axis in (b). PtTe2 has two Dirac points located
at Kc = (0,0,±kc

z). (c), (d) Only show one Dirac point around Kc = (0,0,kc
z). The red (blue)

surface represents the conduction (valence) band [69]. By expanding the Hamiltonian near Kc and
keeping only the linear terms, the type-II 3D Dirac cones with spin degeneracy can be obtained
as Eq. (5.1), which are (e) isotropic in the kx-ky plane, and (f) pronouncedly tilted along the kz
direction.

kinetic term that tilts the Dirac cone. Due to TK > UK along kz in PtTe2, the Lorentz invariance
is violated and strongly tilted Dirac cones emerge at the topologically protected touching points
between the electron and hole pockets [70]. Such an energy spectrum will lead to unique optical
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Figure 5.2: The chemical potential for electrons Ee
F in an n-doped PtTe2 as a function of electron

density Ne at different temperatures (as indicated). The inset shows the magnified details of Ee
F in

the marked area, for Ne from 1017 to 2×1017 cm−3. Ee
F values practically coincide for T < 10 K.

properties that are different from those of other Dirac systems.

In Fig. 5.2, we show the chemical potential (or Fermi level at zero temperature) of electrons Ee
F

as a function of electron density Ne at different temperatures. The carrier number conservation
law mandates that if the hole density Nh has the same concentration as Ne, the Fermi level of the
holes Eh

F in the valence band is simply equal to −Ee
F . If Ne and Nh are zero, Ee

F ≃ 0 and Eh
F ≃ 0

at the Dirac point can be found using the integral bounds (−2k−Fz,2k−Fz) for kz in Eqs. (5.5) and
(5.6), which proves the numerical results. Similarly to a conventional semiconductor, the Fermi
level for electrons in a Type-II 3D DSM increases with increasing electron density but decreases
with increasing temperature, as shown in Fig. 5.2. Bulk PtTe2 has high electron density [159] and
Fermi-level tunability has been achieved in the doped IrxPt1−xTe2 [230]. Therefore, in this work,
the optical conductivity affected by different carrier densities and temperatures is also evaluated.

Figure 5.3 shows the contributions from different electronic transition channels to optical con-
ductivities (OCs), for the light field linearly polarized along the x and z directions. The conditions
for numerical calculations are specified in the caption of Fig. 5.3. To better visualize the details
of the OCs, the wavelength λ is plotted in logarithmic scale in Figs. 5.3(b) and 5.3(d). We no-
tice the following important features. (i) In both σxx(ω) and σzz(ω), intraband transitions give
rise to long-wavelength optical absorption, whereas inter-band transitions mainly contribute to
the optical absorption in the short-wavelength range (λ < 2 µm or ω > 150 THz). (ii) σxx(ω) of
a type-II 3D DSM is strongly dependent on photon energy in the long-wavelength range (λ > 2
µm or ω < 150 THz), but varies very little when the photon energy is kept increasing beyond this
range. This is similar to graphene [215, 216] that hosts the non-tilted and isotropic Dirac cone
in the x-y plane [see Fig. 3.1]. (iii) As shown in Fig. 5.1(d), σzz(ω), which changes through-
out the wavelength range, is different from σxx(ω) and exhibits the anisotropic optical properties
of a type-II 3D DSM. More specifically, in the short-wavelength range σzz(ω) increases with
increasing photon energy and in the long-wavelength range σzz(ω) requires less photon energy
than σxx(ω). (iv) Optical absorption windows can be found in the ≈ 3-200 µm wavelength range
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Figure 5.3: Contributions from different electronic transition channels to optical conductivities
for the light field linearly polarized along the x and z directions at fixed temperature T = 77 K,
electron density Ne = 5× 1018 cm−3, hole density Nh = 5× 1017 cm−3, and energy relaxation
time τ = 0.5 ps. (a), (b) Show the in-plane optical conductivity σxx(ω) as a function of frequency
ω and light wavelength λ , respectively. (c), (d) Out-of-plane optical conductivity σzz(ω) as a
function of ω and λ , respectively. Both σxx(ω) and σzz(ω) include intraband transitions (black
dotted curve for σ++ and red dashed curve for σ−−) and the interband transition from the valence
band to the conduction band (blue dashed-dotted curve for σ−+). Ω is the unit of resistance Ohm.

for both σxx(ω) and σzz(ω). Such infrared absorption windows can be observed in other 2D and
3D Dirac systems and stem from the gapless Dirac cones in the energy band [133, 215, 216], as
shown in Figs. 3.1 and 3.2.

The interesting features of the anisotropic optical absorptions shown in Fig. 5.3 can be under-
stood with the help of Fig. 5.4, which shows the mechanism of carrier-photon scattering based
on the electronic energy spectrum of the bulk PtTe2. When the light radiation field is absent in
an n-doped type-II 3D DSM, there is a single Fermi level of electrons Ee

F in the conduction band
and all states below Ee

F are occupied, that is, there is no hole density (Nh = 0). When a light field
is applied to the system [see Figs. 5.4(a) and 5.4(b)], the electrons in the valence band can gain
energy from the external light field and be excited into the conduction band through photon ab-
sorption. Thus, both the electron density Ne and the Fermi level of electrons Ee

F in the conduction
band increase, while the holes are left in the valence band with the Fermi level of the holes Eh

F
corresponding to the hole density Nh. In such a case, the intraband electronic transitions accom-
panied by the absorption of photons can occur not only in the conduction band (σ++

xx and σ++
zz )

but also in the valence band (σ−−
xx and σ−−

zz ), which are a direct consequence of the broadening
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Figure 5.4: Schematic diagram of the electronic transitions accompanied by the photon absorption
in an n-doped type-II 3D DSM. The optical absorption process for the light polarized (a) in the
x-y plane and (b) along the z direction. F0 ̸= 0 refers to the case in the presence of the linearly
polarized light field. Ee

F and Eh
F are, respectively, the Fermi level for electrons and holes, and the

shaded areas refer to the occupied states. In-plane optical conductivities σ ll′
xx (ω) and out-of-plane

optical conductivities σ ll′
zz (ω) are induced both by intraband (ll′ = ++ and −−) and interband

(ll′ =−+) transition channels. In line with (a) and (b), the isoenergy contours of EK = Ee
F in the

kx-ky plane and in the k-kz plane are shown in (c) and (d), respectively. The solid-shaded areas
represent the Pauli blocking regions, and the rest areas represent the allowed transitions. The
wave vector contour Λx = h̄ω/(2h̄vx) for kx is marked by the solid curve in (c). Two critical wave
vector cutoffs, Λ±

z = h̄ω/[2h̄(vt ± vz)] for kz, are marked in (d): Λ−
z as a dotted curve and Λ+

z as
a dashed-dotted curve.

of the scattering states around the Fermi levels. Furthermore, as shown in Fig. 5.3, intraband
transitions, which occur under low photon energy, are similar to the free carrier absorption, i.e.,
Eqs. (5.11) and (5.14) have a formula similar to the Drude OC of free electrons [208]. The Dirac
cone in type-II 3D DSMs is tilted along kz, so that in the long-wavelength range σzz(ω) requires
less photon energy than σxx(ω) due to more intraband transition channels appearing along kz [cf.
solid shaded areas in Figs. 5.4(c) and 5.4(d)].

The interband OCs, σ−+
xx and σ−+

zz of PtTe2 show more clearly the anisotropic features for a
type-II 3D DSM and can also be explained by Fig. 5.4. In the presence of the light field, the
interband OC at a photon energy h̄ω is governed by f (EK,−)[1− f (EK,+)]δK,K′δ (EK,+−EK,−−
h̄ω) in Eqs. (5.12) and (5.15), where f (EK,−)[1− f (EK,+)] is imposed by the Pauli principle,
δK,K′ denotes momentum conservation, and δ (EK,+−EK,−− h̄ω) denotes energy conservation.
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Introducing the Fermi level Ee
F into energy conservation, while momentum conservation provides

momentum alignment as shown in Figs. 5.4(a) and 5.4(b), EK,+−EK,− = 2Ee
F = h̄ω gives the

wave vector contour Λx = h̄ω/(2h̄vx) in the kx-ky plane, while two wave vector cutoffs Λ±
z =

h̄ω/[2h̄(vt ± vz)] can be found for kz, as shown in Figs. 5.4(c) and 5.4(d). For light linearly
polarized along the x direction, there are two cases: (i) in the low photon energy range [h̄ω ≤ 2Ee

F ,
solid shaded area inside the solid curve in Fig. 5.4(c)], due to Fermi-Dirac distribution at a finite
temperature the interband transitions are almost Pauli-blocked, which leads to a very small σ−+

xx
in this range, but intraband transitions can still occur as we mentioned before; (ii) in the high
photon energy range [h̄ω > 2Ee

F , outside the solid contour in Fig. 5.4(c)], σ−+
xx increases rapidly

and then varies very little with increasing photon energy because only viable states are allowed
to contribute to σ−+

xx . This case is analogous to other isotropic and non-tilted Dirac systems at
finite temperatures, such as graphene [see Fig. 3.1] [215, 216]. Since the energy dispersions
of PtTe2 and graphene in the x-y plane are both isotropic, their in-plane OCs are contributed
by intraband and interband transitions, while the interband transition channels are limited by
the closed 2D Fermi surface because only viable states are allowed to contribute to interband
transitions. Consequently, their in-plane OCs have similar absorption windows and are nearly ω

independent at a high photon energy regime in the case of finite temperature [152, 215, 216], as
shown in Figs. 3.1 and 5.3.

In contrast to σ−+
xx , σ−+

zz induced by the polarization of light along kz has unique properties that
stem from the hyperbolic isoenergy contours opened by the tilted Dirac cone, as shown in Figs.
5.4(b) and 5.4(d). Two wave vector cutoffs Λ±

z indicate that σ−+
zz has three photon energy regimes:

(i) in the low photon energy regime [h̄ω ≤ 2Ee
F/(γ +1) with γ = vt/vz being the tilt index, inside

the dashed-dotted curve in Fig. 5.4(d)], interband transitions are almost Pauli-blocked, so that
σ−+

zz nearly vanishes and intraband transitions mainly contribute to the OC in this case; (ii) in the
intermediate photon energy regime [2Ee

F/(γ +1)< h̄ω ≤ 2Ee
F/(γ −1), outside the dashed-dotted

curve and inside the dotted curve in Fig. 5.4(d)], some states are Pauli-blocked by the left branch
of the hyperbola, where σ−+

zz increases rapidly with increasing photon energy; (iii) in the high
photon energy regime [h̄ω > 2Ee

F/(γ − 1), outside the dotted curve in Fig. 5.4(d)], the contour
of contributing states is intersected by the right branch of the hyperbolic Pauli blocking region
near the tilt axis. Due to momentum alignment, the right branch of Pauli blocking significantly
reduces the absorption of high-frequency photons, hence, σ−+

zz still increases, but increases slowly
with increasing photon energy [see Figs. 5.3(c) and 5.3(d)]. In a word, since optical absorption
describes transitions from occupied states to empty states, the intraband transitions require fewer
photon energies whereas a relatively larger photon energy is needed for the interband transitions
for a type-II 3D DSM. Consequently, an optical absorption window can be achieved through
different energy requirements for intertransition and intratransition channels, and the anisotropic
optical conductivities are induced by the tilted 3D Dirac cone in a type-II 3D DSM.

In this study, we take the electronic energy relaxation time τ as an input parameter that accounts
for the effect of the broadening of the scattering states. The dependence of σxx(ω) and σzz(ω) on
τ is shown, respectively, in Figs. 5.5(a) and 5.5(d) for fixed temperature, electron density and hole
density. A longer energy relaxation time corresponds to a smaller broadening of the scattering
state, and thus to a sample with higher carrier mobility. Neither σxx(ω) nor σzz(ω) changes
with varying τ in the high photon energy regime but they both strongly depend on τ at a lower
photon energy. This is because the broadening of the scattering states mainly affects the intraband
transitions, as shown in Fig. 5.4. In addition, both σxx(ω) and σzz(ω) in the low photon energy
regime exhibit redshift with increasing τ , so that wider and deeper optical absorption windows of
σxx(ω) and σzz(ω) can be observed for the bulk PtTe2 samples with higher electronic mobilities.
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Figure 5.5: (a), (b) In-plane OC, σxx(ω), and out-of-plane OC, σzz(ω), as a function of light
wavelength λ at different energy relaxation times, respectively. The conditions maintained shown
in the legends of (a) for σxx(ω) are also applied to (b) for σzz(ω), with an invariable hole density
Nh = 5×1018 cm−3.

Figures 5.6(a) and 5.6(b) show σxx(ω) and σzz(ω) as a function of the light wavelength λ at
different temperatures T , respectively. The fixed energy relaxation time, electron density and
hole density are specified in the figure. Combining the results with Figs. 5.2 and 5.4, we notice:
(i) Ee

F decreases and Eh
F increases with increasing temperature at the fixed electron and hole

densities; (ii) in the high photon energy regime (λ < 2 µm), Ee
F −Eh

F ≪ h̄ω leads to temperature
independent σxx(ω) and σzz(ω); (iii) in the intermediate wavelength range (2 µm < λ < 20
µm), σxx(ω) is slightly affected by the temperature, which is similar to the experimental results
observed in a bulk sample of type-I 3D DSM Cd3As2 (see Fig. 3.2) due to the similar energy
dispersion for the kx-ky plane [133], whereas σzz(ω) is nearly temperature independent since
the Dirac cone tilts along the kz direction; (iv) intraband electronic transitions need the photon
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Figure 5.6: (a), (b) Show the in-plane OC, σxx(ω), and the out-of-plane OC, σzz(ω), as a function
of light wavelength λ at different temperatures, respectively. The fixed conditions shown in
the legends of (a) for σxx(ω) are also applied to (b) for σzz(ω), with an invariable hole density
Nh = 5×1018 cm−3.

energy to overcome the effect of thermal broadening of the electron distribution function, thus
both σxx(ω) and σzz(ω) are sensitive to temperature in the low photon energy regime (λ > 20
µm). As a result, wider and deeper optical absorption windows can be achieved in both σxx(ω)
and σzz(ω) by decreasing the temperature.

In Figs. 5.7(a) and 5.7(b), σxx(ω) and σzz(ω) versus light wavelength λ are evaluated at dif-
ferent electron densities, for fixed temperature, energy relaxation time and hole density. With
increasing electron density Ne, the Fermi level of electrons Ee

F becomes higher, as shown in Fig.
5.2, which implies that the empty states in the conduction band have higher energies due to the
linear shape of the energy spectrum. Since optical transitions occur mainly through exciting elec-
trons from occupied states to empty states, a higher Ee

F corresponds to a higher transition energy.
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Figure 5.7: (a), (b) Show the in-plane OC, σxx(ω), and the out-of-plane OC, σzz(ω), as a function
of light wavelength λ at different electron densities, respectively. The fixed conditions shown in
the legends of (a) for σxx(ω) are also applied to (b) for σzz(ω), with an invariable hole density
Nh = 5×1018 cm−3.

As a result, systematic blueshift for both σxx(ω) and σzz(ω) can be observed throughout the light
wavelength range in a higher electron density PtTe2 sample. Furthermore, when Ee

F becomes
higher, interband transitions also require a higher photon energy, that is, h̄ω > 2Ee

F , but intraband
transitions only require a few photon energies to overcome the broadening of scattering states,
as shown in Fig. 5.4. Consequently, increasing Ee

F in PtTe2 corresponds to a more conspicu-
ous blueshift of σxx(ω) and σzz(ω) in the high photon energy regime, and thus results in wider
optical absorption windows. Furthermore, our results for σxx(ω) shown in Fig. 5.5(c) are very
similar to the gate-tunable optical absorption window in the 2D Dirac system graphene [see Fig.
3.1(d)] [216], and it is because the energy dispersion of PtTe2 in the x-y plane is similar to that of
graphene. The Fermi level tunability in the doped IrxPt1−xTe2 has been reported [230], therefore,
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based on our analysis we propose that anisotropic and tunable optical absorption windows could
be achieved in the bulk PtTe2 sample as well, which can help to further explore and optimize the
optoelectronic applications of type-II 3D DSMs.

By synthesizing the results of this chapter with the findings from Chapter 3, we can find that
the OCs of type-II and type-I 3D DSMs exhibit both similarities and differences. Both possess
anisotropic OCs, but the anisotropy of type-II is more pronounced in the higher photon energy
range. Both type-I and type-II DSMs have optical absorption windows, but the response of this
window to temperature, energy relaxation time, and electron density is different. The primary
reason is that electron excitations in type-I DSMs is mainly influenced by the Berry curvature
and band inversion structure, whereas in type-II DSMs, electron excitations near the Dirac point
is predominantly affected by the tilted band structure. From the similarities in their OCs, we
can see that both type-I and type-II DSMs share the properties of Dirac fermions; however, the
differences denote fundamental distinctions in the electron excitation mechanisms near the Dirac
point. Our results, therefore, reveal the unique OC of type-II 3D DSMs, offering a theoretical
expansion of the study of Dirac semimetals and providing a supplement for materials with tilted
Dirac cones. Additionally, the tunability of the OCs that we have proposed will provide guidance
for the experiment and application of type-II DSMs in the optical and optoelectronic areas.

5.4 Conclusion of this chapter

Based on the effective Hamiltonian of the n-doped type-II 3D DSM PtTe2, we employ the
energy balance equation to calculate its anisotropic optical conductivity in different linearly po-
larized directions of a light field. In addition, we further study the effects of energy relaxation
time, temperature, and electron density on its optical conductivity.

As a typical type-II 3D DSM, PtTe2 has the strongly tilted 3D Dirac cone along the kz direction
and the isotropic energy spectrum in the kx-ky plane. When bulk PtTe2 interacts with the lin-
early polarized light field, its in-plane optical conductivity σxx(ω) is distinctly different from the
out-of-plane optical conductivity σzz(ω) due to its anisotropic energy dispersion. The intraband
transitions dominate σxx(ω) and σzz(ω) at a low photon energy, whereas the interband transitions
give rise to σxx(ω) and σzz(ω) in the high photon energy range accompanied by distinguishable
anisotropic optical absorptions, which indicates that the tilted 3D Dirac cones of PtTe2 mainly af-
fect interband transitions. Interestingly, with the different energy requirements for intertransition
and intratransition channels, for both σxx(ω) and σzz(ω) the tilted 3D Dirac cones of a type-II 3D
DSM will lead to the anisotropic optical absorption windows. We found that the dependence of
σxx(ω) on energy relaxation times, temperature, and electron densities is similar to that of other
Dirac systems with isotropic energy in the x-y plane, but σzz(ω) has a distinctly different behavior
that stems from the unique energy spectrum of a type-II 3D DSM. In addition, for bulk PtTe2 we
also propose that the position and width of the optical absorption windows are tunable by tuning
its Fermi level.

This theoretical foundation will facilitate further understanding of the anisotropic optical prop-
erties of type-II 3D DSMs and enable further exploration of the possible applications of bulk
PtTe2 and similar materials in optoelectronic devices.
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Transport and quantum lifetimes of type-II

3D DSMs

The transport lifetime of a solid material is the average time during which electrons move with-
out changing their momentum direction, while the quantum lifetime is the average time during
which electrons maintain a given quantum state [208, 209]. Experimentally, the transport lifetime
can be obtained by measuring the Hall mobility, whereas the quantum lifetime is indirectly ob-
tained through quantum oscillations that come from the quantized Landau levels when a magnetic
field is applied [158]. Quantum oscillations studied in solid materials usually are based on the
Shubnikov-de Haas (SdH) effect or the de Haas-van Alphen (dHvA) effect. The SdH effect refers
to the phenomenon in which the electrical conductivity of a material exhibits periodic oscilla-
tions with the inverse of the magnetic field at a low temperature. The dHvA effect, on the other
hand, refers to the periodic oscillations of the magnetization of a material with the inverse of the
magnetic field under similar conditions.

Taking the dHvA effect as an example, we introduce the experimental methods used to obtain
the quantum lifetime, effective mass, and mobility of a type-II 3D DSM. As shown in Fig. 6.1,
under different temperatures (T ) and different magnetic directions (with B ∥ c representing the
out-of-plane case and B ∥ ab representing the in-plane case), the magnetization of a high-quality
PtTe2 bulk sample is measured as the magnetic field changes. The oscillatory components of the
magnetization (∆M) as a function of the inverse magnetic field (1/B) are obtained for different
orientations. By applying a Fast Fourier Transform (FFT), the oscillation frequency F accompa-
nied by the oscillation amplitude of ∆M versus 1/B can be determined for both the in-plane and
out-of-plane cases [157]. Using the Onsager relation, F = (Φ0/2π2)AF , where Φ0 = h/2e is the
magnetic flux quantum, the Fermi surface area AF corresponding to different frequencies F can
be obtained [156, 157]. Considering the Berry phase, the dHvA effect in a 3D Dirac electronic
system can be described by the Lifshitz-Kosevich (LK) formula [156, 157]:

∆M ∝ −B0.5RT RDRS sin
[

2π

(
F
B
− γ −δ

)]
.

Here, RT = (αT m∗/B)/[sinh(αT m∗/B)], RD = exp(−αTDm∗/B), Rs = cos(πgm∗/2me), where
m∗ and me are the effective mass and rest mass of the electron, respectively, TD is the Dingle tem-
perature, and α = 2π2kB/eh̄ is a constant. RT and RD derive from the broadening in Landau levels
induced by temperature effect in Fermi-Dirac distribution and electron scattering, respectively. RT
describes the temperature dependence of the oscillation amplitude, while RD captures the field-
dependent damping of the oscillation amplitude. In addition, the periodic oscillation of ∆M is

83
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Figure 6.1: The de Haas-van Alphen (dHvA) oscillation experimental results of high-quality
bulk PtTe2 samples. (a), (d) Show the variation of out-of-plane and in-plane isothermal magne-
tization of bulk PtTe2 with respect to the magnetic field at different temperatures, respectively.
Corresponding to (a) and (d), (b) and (e) show the oscillatory components of the in-plane and
out-of-plane magnetization as a function of the inverse magnetic field (1/B) in bulk PtTe2, re-
spectively. (c), (f) Fast Fourier transform (FFT) spectra of the quantum oscillations from (b) and
(e), where the x axis represents the oscillation frequency obtained from the FFT. The results are
adapted from Ref. [157].

depicted by the term of the sine function with a phase factor −γ −δ , where γ = 1/2−φB/2π and
φB is the Berry phase [156, 157]. The dimensionality of the Fermi surface determines the phase
shift δ , and for a 3D Dirac electronic system, δ =±1/8 [106, 107], as mentioned in Sec. 1.2.2.

Then, in Figs. 6.2(a) and 6.2(c), by fitting the temperature dependence of the FFT amplitude us-
ing the thermal damping factor RT , the effective mass corresponding to different FFT frequencies
can be obtained. As shown in Figs. 6.2(b) and 6.2(d), fitting the oscillation data with the multi-
band LK formula accurately yields the oscillations of ∆M when B ∥ c and B ∥ ab, from which
the corresponding transport properties can be derived. The quantum lifetime τ = h̄/(2πkBTD)
can be obtained from the Dingle temperature TD. Furthermore, using the definition of mobility
µ = eτ/m∗ and combining the effective mass with the quantum lifetime, the quantum mobility
can be evaluated. The experimental data for the bulk PtTe2 derived from Figs. 6.1 and 6.2 are
summarized in the Tab. 6.1. In addition to the dHvA experiment, the SdH experiment can also
measure the transport properties of type-II 3D DSMs [159]. From Figs. 6.1, 6.2, Tab. 6.1, and
related SdH experimental results, unique features of type-II 3D DSMs can be observed: PtTe2
and PdTe2 have high carrier mobilities, reaching the order of about 104 cm2V−1s−1 [156]; both
PtTe2 and PdTe2 are type-II 3D DSMs, and anisotropic transport properties have been observed
in their bulk samples [156, 157]. The band structure of type-II DSMs features anisotropic and
tilted Dirac cones [70], which is speculated to be the reason for the anisotropic transport prop-
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Figure 6.2: (a), (c) Temperature dependence of out-of-plane (B ∥ c) and in-plane (B ∥ ab) FFT
amplitude; the solid curves represent the LK fit for effective mass. The results of the fitting are
shown in (a) and (c). (b), (d) The multiband LK fitting (red curves) of the out-of-plane and in-
plane oscillation patterns (black curves) at T = 2 K. The results are adapted from Ref. [157].

erties [157], as shown in Tab. 6.1, there are significant differences between the in-plane and
out-of-plane quantum lifetimes, effective masses, and quantum mobilities.

However, to date, research on the lifetime and mobility of type-II 3D DSMs still remains for the
case of the aforementioned experimental measurements, and a systematic theoretical explanation
of the experiments is still lacking. Therefore, we aim to conduct a theoretical study of properties

Table 6.1: The derived parameters from dHvA oscillations for high-quality bulk PtTe2. F is the
oscillation frequency from the FFT spectra, TD is the Dingle temperature, m∗ (in terms of me) is
the effective mass, τq is the quantum lifetime, and µq is the quantum mobility. µ1 to µ6 mark the
different oscillation frequencies. The parameters of this table are adapted from Ref. [157].

T = 2 K, B ∥ c
F (T) TD (K) m∗/me τ (Ps) µq (cm2/Vs)

µ1 102.7 4.3 0.196 0.28 9642
µ2 107.8 9.5 0.151 0.13 6007
µ3 232.2 4.2 0.289 0.29 3754

T = 2 K, B ∥ ab
F (T) TD (K) m∗/me τ (Ps) µq (cm2/Vs)

µ4 142.1 6.8 0.255 0.18 1238
µ5 196.8 2.8 0.318 0.44 2443
µ6 215.1 4.2 0.337 0.29 1523
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such as the momentum lifetime for type-II 3D DSMs, starting from their effective Hamiltonian.
As mentioned in the previous chapter, PtTe2 has a typical type-II 3D DSM state [70], and its
bulk samples are very stable in air and easy to prepare [70, 153, 154]. As a result, many studies
have been reported on the transport properties of PtTe2, which prompted us to choose PtTe2 as
the basis for our theoretical research. In theory, the momentum balance equation, derived from
the Boltzmann equation, is an efficient tool for calculating the transport properties of electronic
systems. Its advantage lies in that by only using the impurity density as an input parameter in the
derivation, one can obtain a clear and specific expression for the momentum lifetime, as shown in
Eq. (2.40). Based on the Boltzmann equation, not only can the quantum lifetime corresponding
to small-angle scattering be calculated, but large-angle scattering can also be considered to obtain
the transport lifetime, which is an important advantage of the Boltzmann equation [208]. The
derivation process of the momentum balance equation can be traced step by step, making the
physical process of scattering very clear [209].

In a few words, the main objective of this chapter is to calculate the momentum lifetime of
bulk PtTe2 using the traceable momentum balance equation based on its effective Hamiltonian,
and to combine the calculation results with existing experiments to provide a detailed explanation
of the transport properties of type-II 3D DSMs. We have discussed the one electron aspects of
type-II 3D DSMs based on PtTe2 in the previous chapter, such as band structure and chemical
potential. Therefore, this chapter will not repeat that introduction but instead directly proceed
with the derivation and calculation of the transport properties of the n-doped bulk PtTe2.

6.1 Eletron-electron screening length of type-II 3D DSMs

In electronic systems at low temperatures, carrier-impurity (c-i) scattering is the principle chan-
nel for carrier relaxation processes. Considering the interaction between charged impurities and
electrons through the Coulomb potential in an n-doped high-quality bulk PtTe2, we first need to
find the screening length of electron-electron (e-e) interactions in its sample at low temperatures.

The induced potential from the e-e scattering in Sec. 2.1 can be written as

Vind(Q, t) =VQ ∑
K

∑
l,l′
⟨K+Q, l′|δN|Kl⟩⟨K+Q, l′|e−iQ·R|Kl⟩

= lim
η→0

VQV (Q, t)∑
K

∑
l,l′

Fl,l′(K,Q)Πl,l′(ω;K,Q), (6.1)

where Q = (qx,qy,qz) is the change of electron wave vector during the e-e scattering events,
VQ = (4πe2)/(κQ2) is the Fourier transform of the 3D Coulomb potential V (R) = e2/(κ|R|),with
κ being the static dielectric constant of the system. δN represents the density fluctuations induced
by the perturbation, and V (Q, t) is the total self-consistent perturbation potential. Additionally,
Fl,l′(K,Q) = |⟨K+Q, l′|e−iQ·R|K, l⟩|2 is the form factor of the many-body interaction, and

Πl,l′(ω;K,Q) = g
f (EK+Q,l′)− f (EK,l)

EK+Q,l′ −EK,l − h̄ω + ih̄η
(6.2)

is the corresponding density-density correlation function, g = gsgv = 4 represents spin and valley
degeneracy, and f (EK,l) is the Fermi-Dirac distribution function for the electron in the initial state
|K, l⟩. Using the definition ε̂(q, t) = 1−Vind(q, t)/V (q, t) [207], we can obtain the expression for
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the RPA dielectric function as

ε̂(ω,Q) = 1− lim
η→0

VQ ∑
K

∑
l,l′

Fl,l′(K,Q)Πl′,l(ω;K,Q). (6.3)

Through the Dirac identity limη→0[1/(x± iη)] = P{1/x}∓ iπδ (x) with P{1/x} being the prin-
ciple value and δ (x) being the Dirac-δ function, the real part of the RPA dielectric function can
be obtained as

εRe(ω,Q) = 1− 4πe2

κQ2 ∑
K

∑
l,l′

Fl,l′(K,Q)ΠRe
l′,l(ω;K,Q), (6.4)

where the real part of the density-density correlation function reads as

Π
Re
l,l′(ω;K,Q) = g

f (EK+Q,l′)− f (EK,l)

EK+Q,l′ −EK,l − h̄ω
. (6.5)

For the n-doped PtTe2 studied in our research, impurity scattering is insufficient to cause in-
terband transitions for electrons and the valence band is fully occupied, which means that there
will be no intraband electron transitions in the valence band. Therefore, in Eqs. (6.4) and (6.5),
we only consider the case of intraband electron scattering with l = l′ = +1 in the conduction
band. The transport properties of a material are normally measured at very low temperature,
so we consider the low-temperature limit (T → 0). Additionally, the static dielectric function
and the long-wavelength limit give ω = 0 and Q → 0. Hence, from Q → 0, we can first obtain
F++(K,Q)≃ 1, and with ω = 0, the summation over the density-density correlation function can
be written as

Λ =− lim
Q→0

g∑
K

Π
Re
++(0;K,Q) =−g∑

K

∂ f (EK,+)

∂EK,+
, (6.6)

where f (EK,+) is the electronic Fermi-Dirac function. At the T → 0 limit, ∂ f (EK,+)/EK,+ =
−δ (EF −EK,+) allows us to further iterate Eq. (6.6) into

Λ =
2

π2

∫
∞

0
dk

∫
∞

−∞

dkzkδ (EF −EK,+) (6.7)

with EF being the Fermi level of electrons. Then, through the properties of Dirac-δ function,
which read as

δ [ f (x)] = ∑
i

δ (x− xi)

| f ′(xi)|
, (6.8)

and ∫
∞

−∞

g(x)δ (x− xi)dx = g(xi), (6.9)

where xi is the ith root of f (x) = 0, f ′(xi) = ∂ f (x)/∂x|x=xi , we can analytically solve the integral
over kz in Eq. (6.7) and obtain

Λ =
2

π2 ∑
i

∫
∞

0
dk

k
|ZK|

, (6.10)
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where

ZK =
∂ (EF −EK,+)

∂kz
=−

∂EK,+

∂kz
=−

(
h̄vt +

h̄v2
z kz√

v2
xk2 + v2

z k2
z

)
,

and kz ≡ ki
z with

ki
z =

−vtEF + i
√

h̄2(v2
t − v2

z )v2
xk2 + v2

z E2
F

h̄(v2
t − v2

z )
.

Here, the band parameters vt > vz of PtTe2 indicate that two roots of kz can be found in EF −
EK,+ = 0, which are ki

z with i =±1.

The real part of the static dielectric function reads εRe(0,Q)= 1+K2
s (Q)/Q2, where the inverse

screening length, Ks, can be obtained through K2
s (Q)=−(4πe2/κ)g∑K Π++(0;K,Q). At a long-

wavelength limit (Q → 0) and a low-temperature limit (T → 0), one can obtain

K2
s (Q)→ K2

s =
4πe2

κ
Λ. (6.11)

Now, we have the expression of the e-e screening length of a type-II 3D DSM, which depends on
the Fermi level of electrons.

6.2 Carrier-impurity scattering rate of type-II 3D DSMs

Consider a high-quality n-doped bulk PtTe2, where the concentration of charged impurities
is very low and the impurities are sufficiently dilute and uniformly distributed, so interference
between successive scatterings can be ignored. Hence, carrier-impurity (c-i) scattering can be
regarded as a process where carriers are influenced by the weak Coulomb potential of the 3D
charged impurities. Thus, the c-i interaction Hamiltonian can be written as

Hc−i =
e2

κ|R−Ri|
, (6.12)

where R = (x,y,z) is the carrier coordinates, the charged impurity is located at Ri = (xi,yi,zi), κ

is the static dielectric constant of the material. We assume that the electronic state of the system
|ζ ⟩ ≡ |K, l⟩ and the background impurity state |I⟩ can be described separately, i.e., |ζ ; I⟩= |ζ ⟩|I⟩.
Then, using the relevant methods from Sec. 2.2.2, we can first obtain the many-body interaction
form factor for the c-i scattering process, including the e-e screening, in a type-II 3D DSM as

⟨I;ζ
′|Hc−i|ζ ; I⟩=

√
Nie2

2κ
[a∗

ζ ′aζ (1+b∗
ζ ′bζ )]

∫
e−iK′·ReiK·R 1

|R−Ri|
dR

=VQFζ ζ ′
√

Nie−iQ·RiδK′,K+Q, (6.13)

where aζ = aK,l and bζ = bK,l come from the eigenfunctions of the carriers in the type-II 3D
DSM, Q = (qx,qy,qz) represents the carrier’s momentum change during the c-i scattering event,
VQ = 4πe2/[κ(K2

s + Q2)] is the Fourier transform of the Coulomb potential, including the e-
e screening, where Ks is the inverse screening length, obtained from Eq. (6.11),

√
Ni = ⟨I|I⟩

with Ni being the impurity density, δK′,K+Q denotes momentum conservation in the scattering
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event. Using Eq. (2.26), we can then obtain the first-order steady-state transition rate for carriers
scattered from the initial state |ζ ⟩ to the final state |ζ ′⟩ under interaction with impurities as

Wζ ζ ′ =
2π

h̄
|⟨I;ζ

′|Hc−i|ζ ; I⟩|2δ (Eζ ′ −Eζ )

=
2π

h̄
Ni|VQ|2|Fζ ζ ′ |2δK′,K+Qδ (Eζ ′ −Eζ ). (6.14)

Here, from δK′,K+Q we have

Q2 = (k′z − kz)
2 + k2 + k′2 −2kk′ cosϕ,

where ϕ is the angle between k and k′ in the x-y plane. Through the geometric relation |k+q|cosϕ =
k+ qcosφ , where φ is the angle between k and q, one can iterate the form factor |Fζ ζ ′ |2 in Eq.
(6.14) into

|Fζ ζ ′ |2 = |a∗
ζ ′aζ (1+b∗

ζ ′bζ )|2 =
∣∣∣∣ v2

xkk′[1+
(εk′z

+l′εK′ )(εkz+lεK)

v2
xkeiθ (ke−iθ+qe−i(θ+φ))

]

(ε2
K′ + l′εk′z εK′)1/2(ε2

K + lεkz εK)1/2

∣∣∣∣2
=

v4
xk2k′2 +(εk′z + l′εK′)2(εkz + lεK)

2

(ε2
K′ + l′εk′zεK′)(ε2

K + lεkzεK)
+

2v2
xkk′(εk′z + l′εK′)(εkz + lεK)

(ε2
K′ + l′εk′z εK′)(ε2

K + lεkz εK)
cosϕ. (6.15)

6.3 Transport and quantum lifetimes of type-II 3D DSMs

In Sec. 2.2.5, we have already provided a detailed derivation of the momentum balance equa-
tion from the Boltzmann equation, and also presented the specific expression for the momentum
lifetimes in a 3D electronic system, which is given by Eq. (2.40):

1
τ l

j
=

g2

N0
∑
ζ ,ζ ′

(k′j − k j)W c−i
ζ ζ ′

∂Eζ

∂k j

∂ fl(Eζ )

∂Eζ

.

Here, j = x, y, or z represents different scattering directions; Eζ = EK,l is the energy dispersion of
the carriers, with l = +1 representing the conduction band and l = −1 representing the valence
band; N0 = Ne +Nh is the total carrier density in the system, where Ne is the electron density and
Nh is the hole density; fl(Eζ ) is the Fermi-Dirac distribution function for electrons or holes.

In our study, the valence band of the n-doped PtTe2 is fully occupied, so f−(EK,−)≃ 1 makes
Nh ≃ 0. The c-i interaction is sufficiently weak and the conservation of momentum and energy
implies that interband transitions (i.e., l ̸= l′) are forbidden. Therefore, the momentum lifetimes
in the system are mainly contributed by intraband electronic transitions in the conduction band,
so we take l = l′ = +1. When the temperature is sufficiently low (T → 0), the Fermi-Dirac
distribution function f (x) and the relation ∂ f (x)/∂x = −δ (x−EF) allow us to iterate energy
conservation δ (Eζ ′ −Eζ ) in Eq. (6.14) into δ (EK,+−EF)δ (EK′,+−EF). Hence, the expression
for the momentum lifetimes in a type-II 3D DSM can be written as

1
τ j

=− 32πNi

h̄Ne
∑

K,K′
(k′j − k j)|VQ|2|FK,K′ |2

∂EK,+

∂k j

×δK′,K+Qδ (EK,+−EF)δ (EK′,+−EF). (6.16)
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Here, |FK,K′ |2 can be obtained from Eq. (6.15) by taking l = l′ =+1. The summation rule in the
above expression can be written as V

∫
dK

∫
dK′ with V = 1/(2π)6. Since the band structure of

the type-II 3D DSM is independent of the angle θ between k and the x axis, we have
∫ 2π

0 dθ = 2π

in the above expression, and one can be further written as

1
τ j

=− 4Ni

π4h̄Ne

∫
∞

0
dk

∫
∞

0
dk′

∫ 2π

0
dϕ

∫
∞

−∞

dkz

∫
∞

−∞

dk′z

× kk′(k′j − k j)|VQ|2|FK,K′ |2
∂EK,+

∂k j
δK′,K+Qδ (EK,+−EF)δ (EK′,+−EF). (6.17)

Here, we have used the cylindrical coordinates of the wave vector K = (k,θ ,kz) and K′ = (k′,θ +
ϕ,k′z). From the Dirac-δ functions, there are EK,+ −EF = 0 and EK′,+ −EF = 0, and we can
obtain the analytical solutions for kz and k′z, respectively, as

kzn =
−vtEF +n

√
h̄2(v2

t − v2
z )v2

xk2 + v2
z E2

F

h̄(v2
t − v2

z )
,

and

k′zm =
−vtEF +m

√
h̄2(v2

t − v2
z )v2

xk′2 + v2
z E2

F

h̄(v2
t − v2

z )
.

Here, we substitute the parameters for PtTe2: {vx,vy,vz,vt} = {0.65,0.65,0.35,0.51}× 106 m/s
[172]. Since vt > vz, it implies that both kz and k′z will have two solutions, and we use n = ±1
and m =±1 to represent the two solutions for kz and k′z, respectively. Using the properties of the
Dirac-δ function in Eqs. (6.8) and (6.9), we can analytically solve the integrals over kz and k′z in
Eq. (6.17), resulting in

1
τ j

=
4Ni

π4h̄Ne
∑
n,m

∫
∞

0
dk

∫
∞

0
dk′

∫ 2π

0
dϕkk′(k′j − k j)

×
|VQ|2|FK,K′ |2

|ZKZK′ |
∂EK,+

∂k j
δK′,K+Qδkz,kzn δk′z,k′zm

, (6.18)

with

ZK =
∂ (EK,+−EF)

∂kz
=

∂EK,+

∂kz
= h̄vt +

h̄v2
z kz√

v2
xk2 + v2

z k2
z
.

Thus, we have obtained the specific expression for calculating the momentum lifetimes of the
carrier-impurity scattering in a type-II 3D DSM.

For the n-doped PtTe2 bulk sample, the c-i scattering in the x-y plane has τx = τy due to its
isotropic band structure in the x-y plane, as shown in Fig. 5.1. Therefore, we focus on studying
the scattering in the x direction. From Eq. (6.18), we can obtain the in-plane transport lifetime of
the system as

1
τ t

x
=

4Ni

π4h̄Ne
∑
n,m

∫
∞

0
dk

∫
∞

0
dk′

∫ 2π

0
dϕ

(
1− k′

k
cosϕ

)
×

k2k′|VQ|2|FK,K′ |2XK

|ZKZK′ |
δK′,K+Qδkz,kznδk′z,k′zm

, (6.19)
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where δkz,kzn and δk′z,k′zm
denote kz ≡ kzn and k′z ≡ k′zm, and

XK =
∂EK,+

∂kx
=

h̄v2
xk√

v2
xk2 + v2

z k2
z
.

In the above expression, for small-angle scattering, cosϕ ≈ 1 does not contribute to the carrier
momentum lifetime. Therefore, the importance of the factor (1−k′ cosϕ/k) lies in its significant
contribution to a large-angle scattering of carriers, which in turn has a notable effect on the carrier
mobility and conductivity. This is an important advantage of the Boltzmann equation and the mo-
mentum balance equation [208, 209]. Considering the case of small-angle scattering for carriers,
we can derive the in-plane quantum lifetime of the system as

1
τ

q
x
=

4Ni

π4h̄Ne
∑
n,m

∫
∞

0
dk

∫
∞

0
dk′

∫ 2π

0
dϕ(k′− k)

×
kk′|VQ|2|FK,K′ |2XK

|ZKZK′ |
δK′,K+Qδkz,kznδk′z,k′zm

. (6.20)

Meanwhile, the out-of-plane quantum lifetime of a type-II 3D DSM along the z direction can be
obtained as

1
τ

q
z
=

4Ni

π4h̄Ne
∑
n,m

∫
∞

0
dk

∫
∞

0
dk′

∫ 2π

0
dϕ(k′z − kz)

×
kk′|VQ|2|FK,K′ |2ZK

|ZKZK′ |
δK′,K+Qδkz,kznδk′z,k′zm

. (6.21)

6.4 Result and discussion

The properties of the lattice structure and the energy band structure of bulk PtTe2 are shown
in Fig. 5.1, and we have analyzed in Sec. 5.3. Here, we directly provide the relevant parameters
for PtTe2 required for numerical calculations as {vx,vy,vz,vt} = {0.65,0.65,0.35,0.51}× 106

m/s [172]. The experimental results indicate that the static dielectric constants of type-II 3D
DSMs, such as PdSe2 [231] and PtSe2 [176], range from about 12 to 13. Although there are no
experimental results for the static dielectric constant of PtTe2, we take κ ≈ 12 in this study based
on the similar lattice structure and electronic bands of these materials.

In Fig. 6.3, we show the variation of the Fermi level EF and the inverse screening length Ks
with the electron density Ne for bulk PtTe2. Figure 6.4 shows the tilted Dirac cone near a Dirac
point in n-doped PtTe2, along with a schematic of EF and the occupied states. From Figs. 6.3 and
6.4, we summarize the following features.

(i) The strong tilt of the Dirac cone along the kz direction results in a non-closed band struc-
ture for PtTe2 in the kz direction, which means that the infinite integral over kz in numerical
calculations will yield unphysical results. Based on the Fermi-Dirac distribution of electrons, the
integration range for kz should be {−2k−Fz,2k−Fz}. As shown in Fig. 6.4(d), at a finite temperature,
the distribution of electrons will lie outside the black dashed curve but will not exceed the range
of {−2k−Fz,2k−Fz}. Using this and taking T ≃ 0 and Ne ≃ 0, we can obtain EF ≃ 0, which proves
our numerical calculations.
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Figure 6.3: (a) In n-doped bulk PtTe2, the electronic chemical potential EF as a function of
electron density Ne in different temperatures, as indicated. We can see that the results are nearly
identical for temperatures T < 10 K. (b) The inverse of the electron-electron interaction screening
length Ks as a function of Ne at T = 2 K.

(ii) The results in Fig. 6.3(a) indicate that the EF of n-doped PtTe2 increases with increasing
Ne, but decreases with increasing temperature T . From Figs. 6.4(a) and 6.4(b), we can see that
the increasing Ne leads to an increasing EF , which in turn also increases the electronic density of
states. This suggests that increasing Ne will provide electrons with more channels for intraband
transitions. At low temperatures, T < 10 K, the results show that the variation of EF with respect
to Ne is nearly consistent, indicating that the electronic excitations should also be nearly identical
for low temperatures T < 10 K.

(iii) Figure 6.3(b) shows the inverse screening length Ks of n-doped PtTe2 as a function of Ne,
calculated using Eq. (6.11) at T = 2 K and the long-wavelength limit Q → 0. From Figs. 6.3 and
6.4, we can see that a larger Ne corresponds to a higher EF and a higher density of states, which
also corresponds to stronger electron-electron interactions. Therefore, increasing Ne results in
a stronger screening effect in the system, as shown in Fig. 6.3(b). This result is similar to the
theoretical results for type-I 3D DSM Na3Bi [87].

(iv) In the transport studies of Dirac systems such as graphene, the effective mass of electrons
m∗ can be estimated by m∗ = h̄kF/(2vF), which is related to the Fermi wave vector kF [214].
However, for PtTe2, its 3D Fermi wave vector is anisotropic, and an analytical expression for the
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Figure 6.4: Schematic diagram of the band structure and Fermi level of n-doped bulk PtTe2. (a)
The energy dispersion of PtTe2 as a function of k =

√
k2

x + k2
y at kz = 0. The Fermi level of the

electrons, EF , is located within the conduction band, with the shaded area below EF indicating the
occupied states. (b) The 2D projection of the band structure on the kx-ky plane when EK =EF . The
energy dispersion is isotropic in the kx-ky plane. The black solid curve corresponds to the Fermi
wave vector kF = EF/(h̄vx) of the electrons in the kx-ky plane when kz = 0. The solid shaded areas
represent the Pauli Blocking region. (c) The heavily tilted energy dispersion in the kz direction for
PtTe2 at k = 0. (d) The 2D projection of the band structure on the k-kz plane when EK = EF . The
tilted Dirac cone results in an anisotropic energy dispersion in the k-kz plane, with a non-closed
hyperbolic contour of wave vector. The geometric structure of the band indicates that the Fermi
wave vector kFz of electrons in the kz direction has two components k±Fz = EF/[h̄(vt ±vz)], where
k+Fz corresponds to the black solid curve and k−Fz corresponds to the black dashed curve.

Fermi wave vector cannot be found. From Figs. 6.4(b) and 6.4(d), we can see that if k ̸= 0 and
kz ̸= 0, we cannot obtain an analytical expression for kF and kFz solely from E(kF ,kFz),+−Ee

F = 0.
Therefore, in the following discussion, we will focus primarily on the quantitative analysis of the
momentum lifetimes for PtTe2, while the discussion of mobility will utilize the effective mass of
electrons measured experimentally for qualitative analysis.

(v) As shown in Fig. 6.2 and Tab. 6.1, the experimental data derived from the dHvA oscillations
indicate that the average effective mass of electrons in the out-of-plane direction for bulk PtTe2 is
much larger than that in the in-plane direction [157]. From the schematic in Fig. 6.4, we can see
that the electron motion in the kz direction has a larger Fermi wave vector range k−Fz due to the
tilted Dirac cone, with (vt − vz)< vx, resulting in k−Fz being significantly larger than kF . This can
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Figure 6.5: For the n-doped bulk PtTe2 at a fixed temperature T = 1.8 K and impurity density
Ni = 1.62×1016 cm−3, the transport lifetime τ t

x and the quantum lifetime τ
q
x as functions of the

electron density Ne are indicated by black dotted curve and red dashed curve, respectively. τα and
τβ represent the experimental data from Tab. 6.2.

Table 6.2: Experimental data derived from the Shubnikov-de Haas (SdH) oscillations of a high-
quality PtTe2 bulk sample. The bulk PtTe2 cuts from a single crystal and has dimensions of
2.9× 1.3× 0.04 mm3. Under a strong magnetic field, the SdH oscillations of this sample have
two typical frequencies, labeled α and β . In the table, F represents the oscillation frequency, TD
is the Dingle temperature, me is the rest mass and m∗ is the effective mass of the electron, τq is
the quantum lifetime, µq is the quantum mobility, and Ne is the electron density. The parameters
in the table are sourced from Ref. [159].

T = 1.8 K, B ∥ c
F (T) TD (K) m∗/me τq (ps) µq (cm2/Vs) Ne (cm−3)

α 108 9.1 0.11 0.134 2138 6.35×1018

β 246 5 0.21 0.243 2038 2.17×1019

explain the observed phenomenon that the out-of-plane effective mass is larger than the in-plane
effective mass in experiments.

For high-quality bulk PtTe2, the quantum lifetimes and mobilities in the x-y plane with electron
densities can be measured from the Shubnikov-de Haas (SdH) oscillation experiments, as listed in
Tab. 6.2 [159]. Meanwhile, Fig. 6.5 shows our theoretical calculations for the transport lifetime
τ t

x and quantum lifetime τ
q
x of the n-doped bulk PtTe2 in the x-y plane as functions of the electron

density Ne, with a fixed impurity density Ni and temperature T . Additionally, the experimental
data from Tab. 6.2 is marked with different symbols in Fig. 6.5. From Fig. 6.5 and Tab. 6.2, we
notice the following important features.

(i) Under the fixed conditions of T and Ni, both τ t
x and τ

q
x increase with increasing Ne. The

difference between Eqs. (6.19) and (6.20) is the factor (1 − k′ cosϕ/k), which indicates that
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small-angle scattering reduces the scattering channels for electrons, leading to a shorter quantum
lifetime. Therefore, τ

q
x is significantly less than τ t

x in PtTe2, which is similar to the theoretical and
experimental results for the type-I 3D DSM Na3Bi [86, 87]. Moreover, the variation of τ

q
x with

respect to Ne is slightly lower than that of τ t
x, which is also similar to Na3Bi [87] but significantly

different from 2D electronic materials [232]. This is because, in 3D DSMs, the effective electron
scattering channels in the x-y plane is influenced by scattering in the z direction, resulting in a
smaller variation difference between τ

q
x and τ t

x.

(ii) Our theory takes Ni as the only fitting parameter in the transport study, providing a method
to estimate the background impurities of type-II 3D DSMs. As shown in Fig. 6.5, when the
background impurity density is fitted at Ni = 1.62×1016 cm−3 with the experimental temperature
T = 1.8 K, our calculated τ

q
x matches excellently with the experimental data τα and τβ listed in

Tab. 6.2. This demonstrates the precision of our theoretical study and indicates that our research
can be used to study the background impurity of bulk PtTe2 and the similar materials. Moreover,
the fitted Ni is much smaller than 1% of Ne, which is in line with the high-quality samples used
in experiments [159].

(iii) In experimental studies of type-II DSMs, many works have explored their properties such
as Fermi surface structure, effective mass, quantum lifetime, quantum mobility, and Berry phase
using the SdH and dHvA effects [155–159]. However, to date, there has been no research on
their transport lifetime and mobility. In this work, we theoretically derived the expression for the
in-plane transport lifetime τ t

x of type-II 3D DSMs by considering large-angle scattering; see Eq.
(6.19). As shown in Fig. 6.5, after determining the temperature and impurity density, we can
obtain how the transport lifetime of type-II 3D DSMs changes with the electron density. Thus,
our theoretical calculations can predict the transport lifetime of type-II 3D DSMs, as well as their
transport mobility.

(iv) As mentioned in the previous discussion and in Fig. 6.4, the effective mass is related to
the Fermi wave vector, which in turn depends on the Fermi energy and electron density. From the
experimental data in Tab. 6.2, we can see that the in-plane effective mass of electrons varies with
the electron density. However, theoretically, we cannot accurately obtain the analytical expression
for the Fermi wave vector of type-II 3D DSMs, so we are unable to estimate the corresponding
quantum mobility. Therefore, in the following discussion, we will only conduct a qualitative
analysis of the mobility.

Figure 6.6 shows the momentum lifetimes and carrier mobilities of n-doped bulk PtTe2 along
different directions at fixed T and Ni. The experimental results marked in the figure are derived
from the dHvA effect shown in Figs. 6.1, 6.2, and Tab. 6.1 [157]. Here, we only provide a
qualitative analysis of the relevant phenomena, since we cannot analytically obtain the effective
mass. Our analysis is as follows.

(i) For a bluk PtTe2, its lattice structure and energy band allow its transport lifetime to be
obtained only in the x-y plane, as shown in Fig. 5.1. This situation is similar to the type-I DSM
Na3Bi [86, 87].

(ii) Figure 6.6(a) shows the variation of τ t
x, τ

q
x , and the out-of-plane quantum lifetime τ

q
z with

Ne at fixed T and Ni. From Eqs. (6.20) and (6.21), we can see that the difference between τ
q
x and

τ
q
z relates mainly to the terms associated with the electronic velocity ∂EK,+/∂k j. Under small-

angle scattering, the effect produced by the electronic velocity is minimal, leading to very small
differences between τ

q
x and τ

q
z . However, τ

q
z remains slightly higher than τ

q
x in the entire range

of Ne. This indicates that even under small-angle scattering, the tilted Dirac cone still induces
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Figure 6.6: For the n-doped bulk PtTe2 at a fixed temperature T = 2 K and impurity density
Ni = 4×1015 cm−3. (a) The in-plane transport lifetime τ t

x and quantum lifetime τ
q
x are indicated

by the black dotted curve and the red dashed-dotted curve, respectively, while the out-of-plane
quantum lifetime is indicated by the blue dashed curve. (b) Corresponding to (a), the transport
and quantum mobilities are calculated using the definition µ = eτ/m∗, where the average in-
plane effective mass m∗

x = (0.196+ 0.151+ 0.289)me/3 and out-of-plane effective mass m∗
z =

(0.255+0.318+0.337)∗me/3 are taken from the experimental data in Tab. 6.1. µ1 to µ6 mark
the results from the dHvA experiment in Tab. 6.1.

∂EK,+/∂k j to exhibit anisotropy in the kx and kz directions, resulting in anisotropic quantum
lifetimes of a type-II 3D DSM. The experimental data in Tab. 6.1 shows that the average quantum
lifetime in the z direction is slightly higher than that in the x direction [157], which is consistent
with our theoretical calculations.

(iii) Figure 6.6(b) shows the variation of the in-plane transport mobility µ t
xx, the in-plane quan-

tum mobility µ
q
xx, and the out-of-plane quantum mobility µ

q
zz with electron density Ne at fixed T

and Ni, using the average effective mass of electrons derived from Tab. 6.1. The experimental
data in Tab. 6.1 indicate that the mobilities of µ4 to µ6 for PtTe2 are significantly lower than
those of µ1 to µ3. The authors of the experiment point out that this arises from the out-of-plane
effective mass being larger than that in the plane [157]. Our analysis of Fig. 6.4 provides further
explanation. This is because the Fermi wave vector in the kz direction is much larger than in the
k direction. Therefore, we can see that even though τ

q
z is only slightly higher than τ

q
x , µ

q
zz will

be pronounced lower than µ
q
xx. This conclusion reasonably explains the anisotropic mobilities

observed in type-II 3D DSMs.

(4) From Figs. 6.5(a) and 6.6(a) with Eqs. (6.19) to (6.21), we find that the momentum lifetimes
of PtTe2 follow τ ∝ N−1

i . In n-doped intrinsic 3D semiconductors, the momentum lifetimes due to
the scattering of ionized impurities obey τ ∝ N−1

i T 3/2 [208]. Therefore, similar to a conventional
semiconductor, type-II 3D DSMs can also have longer momentum lifetimes and higher mobilities
in samples with lower charged impurity densities.
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6.5 Conclusion of this chapter

In this chapter, we used the RPA dielectric function and the momentum balance equation to
calculate the in-plane transport lifetime τ t

x, the in-plane quantum lifetime τ
q
x , and the out-of-plane

quantum lifetime τ
q
z of the n-doped bulk PtTe2. Additionally, we further derived the correspond-

ing anisotropic carrier mobilities. After comparing the experimental results with our theoretical
calculations, we arrived at the following conclusions.

(i) The inverse screening length Ks of a type-II 3D DSM increases with increasing electron
density Ne. (ii) At fixed temperature T and charged impurity density Ni, τ t

x and τ
q
x increase with

increasing Ne in an n-doped type-II 3D DSM. (iii) Our theoretical study uses Ni as the only
fitting parameter to obtain τ

q
x , while the results agree well with the experiment, which proves the

accuracy of our theory. (iv) The calculated τ t
x is much larger than τ

q
x , which shows that large-

angle scattering significantly contributes to τ t
x. Furthermore, our calculation of τ t

x provides a
theoretical prediction for the transport lifetime of type-II 3D DSMs and a guide for their further
transport experiments. (v) At fixed T and Ni, τ

q
z increases with increasing Ne. (vi) For small-

angle scattering, τ
q
z is slightly higher than τ

q
x at the same Ne, whereas µ

q
zz is much smaller than

µ
q
xx. From the experimental results and our theoretical analysis, we find that this is due to the tilt

of the Dirac cone along the kz direction, which causes the in-plane effective mass to be smaller
than the out-of-plane effective mass, thereby resulting in the anisotropic carrier mobilities. (vii)
Similar to traditional semiconductor materials, the momentum lifetime and carrier mobility of
type-II 3D DSMs are inversely proportional to the impurity density, indicating that their higher
quality samples should exhibit longer momentum lifetimes and higher mobilities.

In this study, we theoretically explained the transport experiments of type-II 3D DSMs. Using
the impurity density as the only fitting parameter in the calculations, we have obtained results
that are in line with experimental data, indicating that our theoretical approach can be applied to
estimate the background impurity of the type-II 3D DSMs. Moreover, our research contributes to
a deeper understanding of the electron scattering mechanisms near the Dirac point in type-II 3D
DSMs and provides a theoretical foundation for future transport experiments.
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Conclusion and outlook

7.1 Conclusion of the thesis

The research goals of the thesis are listed in Sec. 1.3, which intend to present detailed studies on
the optoelectronic and transport properties of three-dimensional (3D) Dirac semimetals (DSMs).
Starting from effective Hamiltonians of type-I and type-II 3D DSMs, this thesis investigates the
optical conductivities (OCs), plasmon properties, and transport properties of type-I and type-II
3D DSMs using the RPA dielectric function, momentum balance equation, and energy balance
equation approaches. Based on the research goals, the conclusions of the thesis are summarized
as follows.

In chapter 3, we analyze the energy band characteristics and calculate the OC of type-I 3D
DSMs based on Na3Bi. We find that the nontrivial changes in the density of states (DOS) of
Na3Bi at lower electron densities are mainly induced by the Berry curvature and band inversion
along the kz direction, which will further affect the low-energy excitations. Following this, the
anisotropic OC of bulk Na3Bi, where the out-of-plane OC σzz(ω) is smaller than the in-plane OC
σxx(ω), can be observed. Intraband and interband transitions contribute to the long-wavelength
OC and the short-wavelength OC, respectively, leading to observable optical absorption windows
in both σxx(ω) and σzz(ω), which explains the experimental results. The variation of σxx(ω) with
electron density is more pronounced, while σzz(ω) shows less variation, indicating that the Berry
curvature primarily affects σzz(ω) in this type of topological materials. In addition, the changes
with energy relaxation time, temperature, and electron density demonstrate the tunability of the
OC of type-I 3D DSMs. This chapter is the first to propose the effects of band inversion and
Berry curvature on OC among the studies of type-I 3D DSMs and to provide both quantitative
and qualitative explanations of the corresponding experimental results, which contributes to the
research on the optoelectronic properties of 3D DSMs.

In chapter 4 the plasmon modes of the type-I 3D DSMs Na3Bi and Cd3As2 are evaluated con-
sidering the nontrivial band structure and Berry curvature. When the plasmon wave vector (q and
qz) approaches zero, the plasmon energy (h̄ω) of type-I DSMs also approaches zero. However, as
the q and qz increase, the plasmon dispersion initially exhibits linear behavior and then transitions
to parabolic dispersion, which aligns with nontrivial band structures of Na3Bi and Cd3As2 but
differs from the plasmon modes of three-dimensional electron gases (3DEG) and graphene. Low-
ering the electron density so that the Fermi level lies within the band inversion reveals a dramatic
reduction in the qz for both Na3Bi and Cd3As2. This reduction arises from the influence of the
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Berry curvature on the electron momentum and DOS in the kz direction. The reduction in the
qz is noticeably smaller in Cd3As2 than in Na3Bi, indicating that Na3Bi exhibits stronger band
inversion and Berry curvature. This study of type-I 3D DSMs, which uses a complete effective
Hamiltonian to study the plasmon modes, discovers and explains the effects of their topological
properties on their plasmon modes, deepening the understanding of the collective excitations in
3D DSMs.

In chapter 5 the calculated OCs of n-doped bulk PtTe2 under different light polarization direc-
tions shows that the anisotropy between the in-plane OC σxx(ω) and the out-of-plane OC σzz(ω)
of a type-II 3D DSM arises from the strong tilt of the 3D Dirac cone along the kz direction.
This indicates that the physical mechanisms behind the anisotropic OCs of type-I and type-II 3D
DSMs are essentially different. The interband and intraband transitions dominate PtTe2’s OCs
at higher and lower photon energies, respectively, resulting in observable optical absorption win-
dows for both σxx(ω) and σzz(ω), similar to type-I DSMs and graphene, highlighting the Dirac
fermion characteristics of PtTe2. In the short-wavelength region, the anisotropy between σxx(ω)
and σzz(ω) is particularly pronounced, indicating that the tilted Dirac cone primarily affects the
interband transitions. The OCs of PtTe2 are also significantly influenced by temperature, energy
relaxation time, and electron density, showing the tunable optoelectronic properties of type-II 3D
DSMs. This theoretical research studies the OCs of the type-II 3D DSM PtTe2, which identifies
and explains the essential differences in OCs between type-II 3D DSMs and other Dirac materials
and provides theoretical guidance for further experiments.

In chapter 6 the in-plane transport lifetime τ t
x, the in-plane quantum lifetime τ

q
x , and the out-of-

plane quantum lifetime τ
q
z of the n-doped type-II 3D DSM PtTe2 as functions of electron density

Ne are calculated at fixed impurity density Ni and temperature T . The calculated τ
q
x versus Ne,

where Ni is the only fitting parameter, is excellently consistent with the Shubnikov-de Haas (SdH)
experiment. At the same Ne, τ t

x is much larger than τ
q
x , indicating that the angle of carrier-impurity

scattering mainly contributes to τ t
x. The calculated τ

q
z is slightly higher than τ

q
x , which is also in

line with experiments. The effective mass measured in the z direction is much larger than that in
the x direction, which arises from the Dirac cones that tilt along the kz direction, leading to a much
larger Fermi wave vector in the z direction. Consequently, the in-plane quantum mobility µ

q
xx can

be much larger than the out-of-plane quantum mobility µ
q
zz. This work provides an expression

for the momentum lifetimes of type-II 3D DSMs and offers a theoretical model for fitting their
background impurity densities. Furthermore, the transport lifetime of type-II 3D DSMs can be
predicted by our theoretical study as well, which calls for further experimental studies.

In summary, in this thesis we theoretically studied the optoelectronic and transport properties of
3D DSMs by investigating their optical conductivities, plasmon modes, and momentum lifetimes.
The physical mechanisms of these properties are analyzed, the corresponding experimental phe-
nomena are explained, and many novel properties are theoretically predicted as well, which not
only advances the fundamental condensed matter physics, but also promotes further technological
developments.

7.2 A research outlook

As introduced and studied in the thesis, optoelectronic and transport research of three-dimensional
Dirac semimetals continues to progress at a tremendous pace. However, there are still many
unanswered questions regarding the use of 3D DSMs as platforms for optical, optoelectronic,
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plasmonic, and transport applications or for new and unexpected physics. Therefore, there is
great potential to extend the work presented in this thesis.

In the study of the opitcal conductivity and plasmon mode in this thesis, electron-phonon inter-
actions were not considered. However, some experiments indicate that for both type-I and type-
II three-dimensional Dirac semimetals, phonons will affect their optoelectronic and plasmonic
properties, leading to phenomena such as nonlinear absorption peaks in the optical conductivity.
Hence, in future research, it is worth considering further electron-photon-phonon interactions to
present more accurate theoretical research for Dirac semimetals.

The Hamiltonians used in this thesis are based on bulk samples of Dirac semimetals, where
we only consider the case of unconfined electron momentum by sample thickness. In studies of
materials, the thickness of samples plays an important role that influences the Dirac properties,
topological properties, etc. In some cases, thickness variations should be introduced as a param-
eter in the studies, such as the thickness-dependent optical response, quantum Hall effect, and
topological phase transition. Therefore, the effect of thickness on the optoelectronic and transport
properties of Dirac semimetals needs to be explored further.

Both Weyl and Dirac semimetals belong to topological semimetals. They have many similari-
ties, but there are also essential differences. For example, in momentum space, Dirac semimetals
have fourfold degeneracy at the Dirac point, while Weyl semimetals only have twofold degen-
eracy. Research on Weyl semimetals also finds rich and interesting physical properties, as well
as many unanswered questions. Thus, exploring the optoelectronic and transport properties of
Weyl semimetals can also contribute to the broader research field of topological materials and
topological properties in general.

The thesis is based on the effective k · p Hamiltonian theory, which has advantages such as
fast computation, traceable derivation, and highly accurate results under low-energy and small-
momentum conditions. However, as momentum and energy increase, the effective model is no
longer sufficient to describe the electronic excitations, and at this point, the tight-binding model
and first-principles calculations become more effective. First-principles, tight-binding theory, and
the effective Hamiltonian model are powerful tools for studying the physical properties of mate-
rials, each with its own advantages and disadvantages. Upon the effective Hamiltonian model
employed in this thesis, using first-principles and tight-binding theory will allow for more ex-
tensive and comprehensive theoretical research, towards better understanding and control of the
microscopic mechanisms behind the phenomena revealed in this thesis.
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